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Executive Summary
Face recognition has become a fundamental technology in multiple real-world applications
using pattern recognition-based tools to offer an increased level of security. Moreover, face
recognition solutions increasingly use more sophisticated artificial intelligence (AI)
techniques, witnessing significantly increased performance in recent years. However, these
performance gains are often associated with higher complexity and harder to understand
systems – consequently modern AI-based face recognition systems are sometimes referred
to as ‘black-box’ systems. This raises the risk of not trusting AI-based facial recognition
technology if its results cannot be minimally explained, especially when this technology also
brings risks in terms of privacy, which is a very sensitive societal issue. Thus, facial
recognition explainability has become a pivotal step to understand AI-based facial
recognition systems’ behaviour and to increase trust on the used technology. Explainability
can be the decisive factor to enable the usage of face recognition systems that conform with
the European initiative entitled “Artificial Intelligence Act”, where most biometric recognition
systems are considered “high-risk AI”, and the requirements for their authorization will
include the need for transparency and information to the user.
The idea underlying AI-based facial recognition explainability is to offer insights into why a
specific face probe is matched with one identity instead of another. The explainability
process starts by identifying the AI-based face recognition influencing factors, understanding
their impact on the overall performance of AI-based facial recognition systems. In this
context, the XAIface project aims to contribute to a better understanding and explanation of
the working mechanisms of AI-based facial recognition systems, to enhance their
effectiveness and the social acceptance of AI-based facial recognition technology.
The main objective of this report is to provide a survey on the influencing factors that impact
the recognition performance of AI-based facial recognition systems, in general, and those
based on deep learning (DL)-based facial recognition systems, in particular. This report also
reviews existing publications that study the impact of the various influencing factors in face
recognition performance, and try to model the nature and strength of their effect when
compared to each other, as well as any interference between them. Based on the review
included in this report, additional studies may be performed to obtain further models
considering appropriate criteria, metrics and protocols to more understand the impact of the
identified influencing factors on DL-based face recognition performance.
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1. Introduction
Over the past few years, automatic face recognition has attracted remarkable attention due
to its increasing performance but has also raised some concerns from industry, research
communities, and society in general. This attraction can be demonstrated by the number of
developments and contributions coming from multiple backgrounds, including the image
processing, computer vision, and pattern recognition communities, among others, all
somehow related to face recognition technology [1][2][3][4]. Moreover, multiple face
recognition systems have been deployed for day-to-day usage, e.g., Face ID by Apple1,
Rekognition by Amazon2, DeepFace by Facebook [5], and FaceNet by Google [6]. The main
reason behind this growth of face recognition technology are its advantages over other
biometric modalities (e.g., fingerprint, iris, etc.) for human identity recognition in a wide range
of daily applications, notably in terms of its easy deployment, invasiveness and level of
security.

There are two main ways face recognition may be used in practice, namely identification and
verification:

● Identification: The purpose is here to answer the question: “Who are you?” by
comparing the individual’s face with the full set of facial templates stored in the facial
recognition system’s database. A facial template (henceforth just mentioned as
template) is the set of pertinent and unique features to be used for recognition
purposes that is extracted from a facial sample. This process of identification is
referred to as one-to-many matching, which is useful e.g., for law enforcement and
forensic investigations.

● Verification: The purpose is here to answer the question: “Are you who you say you
are?”. Herein, the identity is proved by verifying whether the face presented to the
system corresponds to the claimed user. Thus, the input face is used for comparison
against a formerly collected template of the user, which is known in biometric terms
as one-to-one matching; this is useful in applications such as mobile banking, access
management, and multi-factor authentication systems to access secured servers.

In the early stages of face recognition technology, several hand-crafted approaches have
been developed for face recognition [7][8][9][10][11][12]. With the advent of artificial
intelligence (AI) and augmented hardware capacity in recent years, the research community
shifted to using AI-based algorithms for face recognition [1][2][6][13][14]. The recent
AI-based face recognition solutions typically use deep learning (DL) strategies to extract
multiple and powerful face features from the input (facial) data to drive the recognition
process ahead, significantly improving the robustness and performance of face recognition
technology.

However, notwithstanding the impressive success associated with AI-based face recognition
systems, they are still suffering from some drawbacks. On one hand, AI-based facial
recognition is used as a powerful tool to offer increased security in daily life. However, this
recent demand for increased security may threaten individual privacy, which is a topic of

2 https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html
1 https://support.apple.com/en-us/HT208109
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intense discussion in human societies, and therefore may raise difficulties to the wide
deployment of AI-based facial recognition. For instance, many people do not like having
images of their faces recorded and stored in databases, even for anonymous future use, as
often people do not trust the entities running facial recognition systems. In several cultures,
simply taking facial pictures can be an issue. As a consequence, facial recognition
technology needs to be trustworthy to play the key role it has the potential to play in human
societies.

On the other hand, like any other technology, face recognition is not perfect. It has been
demonstrated that face recognition can exhibit various weaknesses, notably biases, e.g.,
related to gender, race or age groups. This is particularly critical for AI-based face
recognition systems whose performance is largely linked to the training datasets and the
deep models used to build the recognition system. For example, in February 2018,
Massachusetts Institute of Technology (MIT) researchers discovered that FACE++ tools
have a higher error rate when identifying darker-skin women compared to lighter-skin men
[15]. In July of the same year, it was reported that the facial recognition systems built by
Amazon falsely identified some US Congress members as criminals [16].

These critical issues pose multiple questions about how AI-based face recognition systems
are working, and if it merits risking individual privacy in the name of security. Therefore, it
becomes a real need to fulfil interpretable reasoning of the AI-based face recognition
systems’ final decision, in order to understand and explain their behaviour. In this context,
the XAIface project aims to better understand the working mechanisms behind AI-based
facial recognition systems in terms of recognition performance and explainability to ensure
trustworthiness and increase the level of social acceptance of these systems. To accomplish
this, a starting task is to identify the influencing factors that impact the AI-based face
recognition decision making.

In this context, Section 2 of this report targets reviewing the major influencing factors
impacting AI-based face recognition performance. Moreover, since DL solutions have proven
their advantage for face detection and recognition, this review specifically addresses the
influencing factors in DL-based face recognition. Next, Section 3 will review the main studies
in literature on the impact of the various influencing factors on the face recognition
performance, notably models expressing the face recognition accuracy as a function of
some relevant influencing factor parameters. Following this review, additional studies will be
performed to obtain additional models for these impacts, as a fundamental step to fully
understand the impact of such factors on the performance of deep face recognition systems
and contribute to improving the underlying processes involved. The ultimate goal is
enhancing the reputation and trustworthiness of AI-based facial recognition technology in our
society.
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Measuring and Improving Explainability for AI-based Face Recognition

2. Influencing Factors in AI-based Face
Recognition

Understanding and explaining the behaviour of AI-based face recognition systems requires
comprehending the influencing factors that impact the final decision of real-world deep face
recognition solutions. Generally, the influencing factors can be categorised into two classes,
namely intrinsic and extrinsic factors [17]:

● Intrinsic Factors: Include all physical states of the human face impacting the
recognition system decision-making process. Examples include facial expressions,
ageing, or plastic surgery, among others.

● Extrinsic Factors: Incorporate all factors not directly related to the human face
characteristics, but which can influence the facial appearance. Examples include
occlusions, changes caused by noise or the spatial resolution or the device used to
capture facial images, or illumination and pose variations, but also any algorithmic
aspect that can condition the results to be achieved.

As illustrated in Figure 1, another type of classification groups the influencing factors into
three categories, notably:

● Data Quality-related Factors: Include the extrinsic factors directly linked to the state
of the input data (image/video) which may impact the recognition process. Examples
include image resolution, illumination variation, face occlusion, noise, etc.

● Human-related Factors: Include all the individual-based variations that change the
facial aspect, i.e., the intrinsic factors. These factors may include innate/natural
changes, for instance related to ageing or other demographic effects; as well as to
facial changes related for instance with face expression variations, or to more
permanent changes, such as those resulting from plastic surgery.

● Model-related Factors: Include the extrinsic factors associated with the deep
learning features and algorithms used for face recognition. These factors may include
the architecture of the deep network, training strategy, loss function, or the strategy
for model parameters reduction, among others.

Figure 1: Taxonomy of AI-based face recognition influencing factors.
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The objective of the current section is to review the key influencing factors in AI-based face
recognition, following the classification into three categories proposed above. Also, the state-
of-the-art works which tackle or try to reduce the effect of these factors on face recognition
systems are discussed.

2.1. Data Quality-related Influencing Factors
The available literature supports the conclusion that a decrease in data quality can degrade
the real-world facial recognition systems performance. In the following, a list of the most
critical data quality-related factors is presented and discussed.

2.1.1. Occlusion
In practice, it is not always possible to present fully visible facial images/videos to face
recognition systems’ sensors. This may be due to the presence of elements such as beard,
moustache, sunglasses, scarf, earrings, hairs, etc. (see Figure 2), that occlude the
appearance of the full face. In addition, contrary to the recognition by humans who are able
to deal with significant variations, facial recognition mechanisms tend to perform poorly when
some facial parts are missing [18][19]. Thus, the partial occlusion of the human face is one
of the most challenging problems for automated face detection and recognition.

Various approaches have been introduced to improve the capacity of face recognition
systems to perform adequately in less constrained environments [20][21][22][23][3]. As an
example, in [20], a method called dynamic feature matching (DFM) is suggested to deal with
partial face recognition. With this purpose in mind, a fully convolutional network (FCN) is
combined with a sparse representation classification (SRC) to generate spatial features
targeting minimising the intra-variation between the complete facial images and the facial
patch images of the individual, which efficiently enhance the recognition rate of the facial
patch images. In [22], Xu et al. introduce an occlusion-aware face REcOgnition (OREO)
method to improve the robustness of 2D face recognition systems to occlusions. The
concept underlying this method includes two stages. First, an attention mechanism is used
to extract local identity-related regions; the obtained local features are then merged with the
global characteristics to compose a single template. Second, a training strategy and a
similarity-based triplet loss function are used to equalise the occluded and non-occluded
facial images. In November 2020, the National Institute of Standards and Technology (NIST)
introduced a second of a series of reports exploring the performance of face recognition
solutions under occluded faces by protective facial masks [3]. This report extended the
previous one presented in July of the same year that assesses the impact of masked faces
on face recognition solutions submitted before March 2020. The second report appended 65
new face recognition solutions to those tested in the previous report, offering a total of 152
face recognition solutions. The report communicated that the face recognition solutions
available before the pandemic had issues with masked faces, while some newer face
recognition solutions showed better performance than their predecessors in terms of
recognizing masked faces.
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Figure 2: Illustration of partially occluded face images from the Face Detection Data Set and
Benchmark (FDDB) dataset [24].

2.1.2. Varying Illumination Conditions
Illumination variations can radically reduce the face recognition system’s performance, as
they can make the face detection and recognition tasks more defying and arduous. As
illustrated in Figure 3, illumination changes can be caused by the diverse lighting conditions
in which images/videos have been acquired, potentially affecting image brightness, contrast,
background/foreground light and the presence of shadows.

Illumination variations have been examined in various face recognition research studies
[25][26]. For instance, in [25] illumination variations are used as well as pose and
background variations to generate synthetic data to be used for training DL-based face
recognition systems, in order to reduce the need for real-world training images. The
experimental results showed that fusing large-scale real-world data with synthetic data
enhances the recognition rate. Moreover, it has been found that training recognition models
with only synthetic data with strong variation fulfils well even without dataset adaptation
where unrestricted and labelled outside images (i.e. those images do not belong to any of
the considered classes, but are mistakenly labelled to one of the existing classes) are used.
Moreover, illumination aware facial detection and recognition techniques have been
developed [27][28][29]. In [29], the fractional discrete cosine transform (Fr-DCT) approach is
proposed to minimise the impact of uncontrolled light sources of multiple directions on the
individual’s face. Moreover, [28] suggests a new method to enhance the lighting
normalisation by developing an underlying reflectance model that characterises the
interactions between the lighting source, camera sensor, and skin surface to more effectively
represent the formation of facial colour appearance.
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Figure 3: The effects of illumination changes on the appearance of a human face, from the
CMU Pose, Illumination, and Expression (PIE) dataset [30].

2.1.3. Pose Variation

When a facial image is not frontal, face recognition may still succeed although with a lower
accuracy, notably when the face undergoes significant rotations. Notice that under such
circumstances the recognition task becomes more complex even for humans. In fact, pose
variations that result from image acquisition from different points of view, or correspond to
different head movements, modify the spatial relations between the observed facial features
and those considered during the user registration. Hence, this can result in insubstantial
facial appearance changes, as illustrated in Figure 4. In this context, handling pose variation
becomes a critical requirement to improve the recognition performance.

Several studies have been carried out to understand how face recognition accuracy is
influenced by pose variation [31]. Moreover, multiple pose invariant algorithms and
non-frontal face datasets have been developed to deal with pose variations [32][33][34]. In
[32], the UHDB31 facial dataset is introduced with pose, illumination, and resolution
variations. In addition, three protocols are defined to identify the weaknesses and strengths
of 3D, 2D and 2D-2D face recognition under pose, illumination, and resolution variations. In
[33], a deformable face net (DFN) algorithm is proposed to handle pose variation for face
recognition. This algorithm attempts to learn both face recognition-oriented alignment and
identity-preserving features. For this reason, the displacement consistency loss (DCL) is
used as a regularisation to impose the learned displacement fields for aligning faces to be
locally consistent. Besides, the pose-triplet loss (PTL) and the identity consistency loss (ICL)
are used to reduce the intra-class traits variation results for multiple poses. Additionally, they
increase the inter classes traits under the same pose.
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Figure 4: Different facial poses from Bosphorus dataset. The images include 7 yaw face
rotations, ranging from -90o to 90o [35] .

2.1.4. Image Resolution
Although modern deep learning face recognition systems report near-perfect performance
on well-known datasets, their recognition accuracy can be significantly reduced when
low-resolution facial data are used [36][37]. This is often the case when facial data is
recorded in environments where the captured faces have limited resolution, such as in
surveillance scenarios, as illustrated in Figure 5. Moreover, low-resolution images often
cannot be used for some pre-processing techniques (e.g., data augmentation) usually
considered for training deep face recognition models, which can lead to performance
degradation.

Several approaches have been proposed in the literature to tackle the usage of
low-resolution images for deep face recognition [38][39][40]. For example, in [39] a
discriminative multi-dimensional scaling (MDS) approach is proposed to generate a mapping
matrix that projects high resolution and low-resolution images to the same subspace; for
example, high-resolution (HR) and low-resolution (LR) images of the same individual are
grouped, while the HR and LR images of different individuals are discriminated. In [40], a
deep neural network-based identity-preserving end-to-end image-to-image translation
method is proposed to super-resolve very LR facial images to their HL counterparts while
maintaining the identity-related information. For this purpose, a deep convolutional
encoder-decoder network is trained in a multi-scale manner with a combination of facial
image reconstruction and an identity-preserving loss.
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Figure 5: (a) Example of frame from a surveillance video. (b) Face region with poor
resolution.

2.1.5. High Dynamic Range
Facial recognition under uncontrolled lighting conditions may become a hard task. Quite
often, the low quality of facial images under uncontrolled lighting conditions reduces the face
recognition systems' performance. A common way to mitigate this problem is through facial
image pre-processing, which although may alter the resulting images, with a consequent
degradation of the facial recognition performance. In this context, high dynamic range (HDR)
imaging [41] is introduced as an alternative solution to increase the facial recognition
performance when faces are captured under various lighting conditions. The strength of
HDR lies in its ability to capture details in high contrast environments, making both dark and
bright regions more clearly visible.

HDR image recognition has been largely investigated in the last couple of years [42][43][44].
In [42], the outperformance of HDR imaging over low (or standard) dynamic range (LDR)
imaging in the facial recognition process is investigated. For that purpose, the Warwick HDR
face dataset is created. After, face recognition is performed by human participants to
compare the HDR and LDR imaging performances. The experimental results of this work
proved the efficiency of HDR to enhance face recognition accuracy. In [43], P. Korshunov et
al. perform a crowdsourcing study to assess the impact of HDR imaging on subjective and
objective facial recognition performance. The subjective facial recognition is carried out
using the QualityCrowd23 open-source framework, while the objective facial recognition is
performed using three face recognition algorithms, notably based on Principal Component
Analysis (PCA)[45], Linear Discriminant Analysis (LDA)[46], and Local Binary Pattern
(LBP)[47]. The experiments are conducted using five facial image datasets created using
five tone-mapped solutions to obtain the HDR images. After, the HDR and LDR face
recognition performances are compared to conclude that the five tone-mapped versions of
HDR affect subjective and objective face recognition differently. Moreover, the impact of
using HDR images varies among the three face recognition algorithms. In [44], the benefit of
HDR imaging for face recognition is assessed. With this purpose in mind, a novel facial HDR
dataset is created under three complex lighting scenarios, namely backlight, left light, and
overhead light. Using a speeded-up robust feature (SURF)-based face recognition system,
the recognition performance is evaluated under three main conditions, notably including LDR

3 https://github.com/ldvpublic/QualityCrowd2
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images captured with a traditional face recognition system sensor, LDR images
pre-processed with conventional methods to minimise the illumination problem, and LDR
image obtained from HDR images through conventional HDR tone-mapping techniques. The
experimental results show that tone-mapped HDR captured images enhance the recognition
performance when used with LDR conventional face recognition systems and help coping
with complex lighting scenarios.

2.1.6. Noise

In several face recognition applications, the acquisition of facial images can easily be
affected by noise, e.g., salt and pepper noise or Gaussian noise. Additional corruption to the
facial images can result from image manipulations including filtering and sparse coding.
Additional degradations may result from intentional attacks, sensor errors, or transmission
errors [48].

Several works in the literature have been developed seeking to enhance facial recognition
performance in the presence of noisy data [49][50]. In [49], Ding et.al propose a
noise-resistant network (NR-Network) for face recognition under noise. The main idea is to
use a multi-input structure in the last fully connected layer of the NR-Network for extracting
multi-scale and more distinctive facial features from the input data. In [50], a quantitative
analysis of the influence of face image denoising and enhancement methods on the
performance of DL-based face recognition is offered. The results of this analysis show that
the used image denoising methods enhance the quality of the facial images, thus improving
the recognition performance [50].

2.1.7. Image Compression

Most face recognition systems have to work under data size restrictions when
storing/transferring biometric samples. For instance, smart cards and mobile applications’
databases have a limited capacity to store the reference facial templates. Furthermore,
limited-bandwidth transfer mechanisms are impacted by the size of the facial features to
transmit. Thus, image compression (e.g., JPEG, JPEG 2000, SPIHT, JPEG XR, etc.) has
become an essential post-processing module, frequently employed in multiple facial
recognition scenarios [51][52], which means that the face submitted for recognition may
suffer from compression artefacts. Despite the popularity of image compression techniques,
their use should be acknowledged since, when the original face image is compressed, some
digital traces/features of the image may be unintentionally manipulated or erased, which may
hamper a reliable face recognition process [53][54].

2.1.8. Acquisition modality
Although the majority of face recognition models have predominantly focused on the use of
images captured and represented in the RGB-colour space, considering additional spectra
allows for increased robustness, in particular in the presence of different poses, illumination
variations, noise, occlusions, as well as increased robustness to presentation attacks
(masks, makeup) [191]. One of the most commonly used light spectra for face recognition, in
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addition to the visible, is the infrared (IR) spectrum, which is briefly described in the
following.

The IR spectrum can be broadly divided into two categories: active and passive.
The active IR spectrum consists of near infrared (NIR) and shortwave infrared (SWIR),
characterised by reflective material properties, which require an (invisible) IR light to reveal
the scene. NIR is placed right next to the red-colour of the visible spectrum with increased
wavelength, which is reflected in the visual similarities of VIS and NIR face images. NIR
remains invariant to lighting-direction and low-light conditions and hence is mostly employed
in monitoring and night-surveillance [195].
SWIR-imagery is, similarly to NIR, visually close to visible imagery. The SWIR-band is
significantly larger than the NIR-band and enables sensing in atmospherically challenging
conditions such as rain, fog, mist, haze and common urban particulates such as smoke and
pollution [196]. In addition, SWIR-sensors are able to capture objects in highly low-light
conditions, which makes SWIR suitable for long-range applications (< one kilometre [197]),
as well as for identification purposes [198].

Unlike active IR, passive IR does not require illuminating the subject of the acquisition.
Beyond wavelength λ = 3µm, the IR band is significantly emissive and passive IR sensors
are able to acquire heat radiation emitted from a human face. Thus, cameras are able to
capture temperature variations across facial skin tissue, brought to the fore by underlying
face vasculature [199]. Sensors able to passively capture temperature variations are called
Thermal sensors. Thermal imagery can be acquired in day or night environments [200].
Passive IR consists of Midwave (MWIR) and Longwave (LWIR). MWIR is located between
SWIR and LWIR, and has both reflective and emissive properties - allowing for the sensing
of different facial-skin-features such as vein patterns [201]. LWIR extends the infrared band
up to λ = 14µm and incorporates exclusively emitted radiation. This shift introduces high
intraclass variations. LWIR is visually similar to MWIR with respect to shape and contrast.

2.2. Human-related Influencing Factors

To understand the performance of face recognition systems, human-related factors should
also be considered. These factors are directly related to the individual’s aspects that impact
facial recognition performance. In the following, a list of these influencing factors is reviewed.

2.2.1. Facial Expression Changes

Commonly, human communication includes verbal and non-verbal modes. Non-verbal
communication may be carried out via facial expressions. As illustrated in Figure 6, humans
use different facial expressions to convey their emotions and feelings (e.g., disgust,
happiness, surprise, anger, and sadness). Previous research proved that some facial
expressions can deceive facial recognition technology and negatively affect its performance
[55][56][57]. This is due to the feature variations induced by face muscle contractions,
therefore modifying the facial geometry and shape. For example, in [56], the influence of
facial expression bias on face recognition technology is assessed. This work addressed two
main issues, notably facial expression biases in well-known face recognition datasets and
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the facial expression influence on face recognition rate. The experiments were conducted
with three face recognition architectures, including VGG16 [58], ResNet-50 [59],
LResNet100E-IR [60]; four facial datasets, including CFEE [61], CK+ [62], CelebA [63],
MS-Celeb-1M [64]; and four different detectors. The experimental results have shown that
the most used facial recognition datasets present huge facial expression biases. Additionally,
it was demonstrated that the genuine comparison performance is more impacted by facial
expression bias than impostor comparison performance. Thus, impersonation attacks via
facial expression alterations can be discarded.

Figure 6: Examples of face expression from the FACES dataset with different significant
expressions changes [65].

2.2.2. Demographic effects

The performance of automated face recognition systems has long been known to be
impacted by demographic cohorts (age, race/ethnicity, and gender) that might lead to
potential bias and accuracy variations. Thus, comprehensive studies have been conducted
to investigate the impact of demographic cohorts on face recognition systems’ performance.
For instance, NIST has carried out experiments to quantify the demographic variations in
contemporary face recognition algorithms [66]. The main objective of this study is to provide
discussions and conclusions concerning the utility and limitations of face recognition
solutions toward demographic variations. For this reason, NIST has prepared a report to
offer specific knowledge regarding the recognition procedure, notes about where
demographic influences may happen, and performance metrics descriptions [66]. Moreover,
empirical results and research recommendations have been presented in that report.

Deliverable D2.1 19



Measuring and Improving Explainability for AI-based Face Recognition

In the following, three demographic biases that impact the performance of face recognition
systems are addressed, including age, race/ethnicity, and gender.

2.2.2.1. Age

Ageing is one of the key factors that may affect the final decision of facial recognition
systems [67]. A person’s facial appearance at a given instant is influenced by the interaction
of a set of muscles and skin tissues, which are ultimately related to the personal lifestyle,
health, and DNA; and those change with human age. When these skin tissues and muscles
change over time, they can lead to twisting on the facial surface and affect the face shape,
causing significant alterations on the individual’s face appearance, as illustrated in Figure 7.
This means that human face ageing affects the recognition process, notably when a
considerable amount of time passes between the acquisition of reference templates and
query facial data.

To overcome facial ageing issues, various types of tools have been developed to reduce the
effects of age-related influencing factors and boost the recognition algorithms’ performance
[68][69][70][71][72]. For instance, in [71], a coupled auto-encoder network (CAN) is proposed
to address age-invariance on face recognition. In [69], a novel approach to detach
age-related characteristics from facial features is proposed. More explicitly, the facial treats
are factorized into two separated components, namely identity-dependent and
age-dependent components. To accomplish this, the so-called decorrelated adversarial
learning (DAL) algorithm is used to reduce the correlation between the paired decomposition
traits of age and identity in an adversarial process. The experiments conducted on face
ageing datasets (e.g., FG-NET [73], MORPH Al-bum 2 [74], CACD-VS [75], etc.) showed the
efficiency of the proposed approach in terms of the facial information preserved in the
identity-independent component.

Figure 7: Ageing process over time of the same individual (example from the CALFW
dataset [76]).

2.2.2.2. Race/Ethnicity

Previous psychological studies have shown that humans tend to recognize faces related to
their ethnical group better than other races [77][78]. The elucidation of this phenomenon is
that individuals get more experience to distinguish people from a homogeneous population
that they subtend daily. This aspect is referred to as the other-race-effect (ORE).

Related to this race perceptual prejudice, research has demonstrated that many face
recognition systems suffer from critical demographic biases that affect the face recognition
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decision-making process [66][79][80][81]. For instance, in [82], it has been found out that the
facial recognition tool “Rekognition” built by Amazon shows poorer performance when it
comes to identifying darker skin women. Additionally, it is proven in [83] that facial
recognition algorithms developed by Westerners tend to identify Caucasian faces more
correctly than Asian faces, and vice-versa. These prejudices might impact the recognition
accuracy for different races but also the security and fairness of facial recognition systems.

2.2.2.3. Gender

Gender bias is considered one of the main sources of errors in automated face recognition
systems. This sexual prejudice has been proved in multiple studies revealing that women
are more likely to be misidentified through facial recognition than men [84]. For instance, a
commercial matcher is used in [85] to explore the performance accuracy variations between
women and men. The experimental results showed lower similarity scores for women
compared to men. A similar conclusion is presented in the gender section of the NIST report
[66], where it was reported that women suffer from higher false-positive rates than men.
Another interesting finding is presented in [86], where it was found that the overlapping
between genuine and impostor score matching distribution is higher for women than for men,
even when using controlled facial images (in terms of facial expressions, makeup, pose
variation).

These findings have opened multiple questions about why and how the performance
accuracy of face recognition solutions varies between women and men. Thus, various works
have been introduced to analyse the gender gap in face recognition systems. For example,
in [87], the effect of women under-representation in the training data on the women's
performance accuracy was investigated. To accomplish this, the ResNet-50 is evaluated with
multiple loss functions using two training datasets. The experimental results showed that (1)
balancing both gender cohorts in the training dataset, does not generate balanced
accuracies in the test stage. (2) Reducing the gender gap is achieved by training a dataset
with more male images, not a gender-balanced dataset.

2.2.3. Artificial beautification
Beautification is the process of making visual alterations to the perceived shape and texture
of a human face. Those modifications can therefore compromise the use of face recognition
systems in security applications since they distort or modify biometric features. Different
types of facial beautification include the use of real-time social media filters, plastic surgery
and makeup presence.

2.2.3.1. Make up
Facial cosmetics have the ability to substantially alter the facial appearance. The use of
makeup can visually modify the proportions of different face treats such as eyes, lips and
cheekbones, having a strong impact on different face recognition systems. The use of make
up has been proved as an effective attack for face recognition systems [190]. In this type of
attack, a person might apply a high amount of makeup in order to imitate the facial
appearance of a target user with the purpose of impersonation.
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Related to this makeup presence problematic, in [190] the vulnerability of different
open-source face recognition systems such as ArcFace [60] is assessed with regards to
different makeup presentation attacks. A makeup attack detection scheme is proposed
which compares face depth data with face depth reconstructions obtained from RGB images
of potential makeup presentation attacks.

2.2.3.2. Plastic surgery

Facial plastic surgery can be divided into two classes:

● Reconstructive Plastic Surgery: Rectifies the face features anomalies e.g., cleft lip,
palate birthmarks.

● Cosmetic Plastic Surgery: Enhances the visual appearance of the facial structures
and characteristics.

When an individual gets plastic surgery, the facial characteristics are naturally transformed,
either locally or globally, to an extent that alters the facial appearance (Figure 8).
Consequently, these individuals may become unknown to the already existing face
recognition systems, including their reference templates. These surgery changes pose a
challenge to automatic face recognition technology [88]. Although facial plastic surgery is
usually employed for cosmetic and scars treatments to improve the person’s appearance, it
might also be used by criminals to ‘manipulate’ their facial identity with the intent to deceive
face recognition systems. This increases the challenge to face recognition technology which
has not only to preserve the accuracy performance but has also to be robust to the changes
produced by facial plastic surgery [89][90].

Figure 8: Illustrations of stars’ facial images before (Top row) and after (Bottom row) plastic
surgery [89].

2.2.3.3. Social media filters

Face retouching is a widespread application available across a huge spectrum of modern
smartphone cameras. In the past years, this type of applications have proved to be more
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and more relevant as their presence on the top 100 applications on Google Play shows. A
social media filter is a photo effect that can be found on those applications and it is applied
to images before publishing them. Those effects can range from simple RGB to
black-and-white image transformation to different facial shape modifications. Facial social
media filters can be divided into four classes:

● Colour adjustment filters: Change in real-time the captured camera colours. Also
modify the image contrast or illumination.

● Smoothening filters: Smooths and blurrys the face skin, making it look as if a layer
of foundation was applied.

● Facial features modification filters: Enlarge, shrink and sharpen different lines of
the face. The most common ones create a smaller nose, a more defined jawline or
increase the lips size.

● Augmented reality (AR) filters: An augmented reality filter is defined as a mask-like
filter that incorporates virtual elements to face images in real-time such as long
eyelashes, make-up, puppy ears or flower crowns sometimes occluding parts of the
face.

● Immersive AR face filter: Place the users' face into a virtual 3D scene in real time.

Due to this social media face filters trend, some investigations are directing their research
towards the creation of facial filters such as skin smothering [188] undetectable for the
human eye. The effect of such filters among others, has an impact on face detection and
identity recognition, especially when crucial face regions are occluded. In [189] a method to
reconstruct the applied manipulation by a filter is developed by implementing a modified
version of the U-NET segmentation network. To improve the face recognition system, deep
learning algorithms and distance measures are applied to the features extracted using a
ResNet-34 network trained to recognize faces.

2.2.4. Lifestyle

The lifestyle of a person, and more specifically the prolonged use of illicit drugs has been
proved to alter the texture and geometric features of a person’s face, hence affecting the
performance of face recognition systems [194]. Drug abuse can lead to visual face changes
such as loss of strength in facial muscles, loss of fat in face, decrease of the skin quality with
the appearance of acne and alteration of nose bones. The combination of those effects lead
to a highly deformed face presenting a complex challenge to face based authentication
systems [193].

To assess the extension of those effects on a face recognition algorithm, [193] analysed
using various state-of-art face recognition algorithms the impact of long term illicit drug
abuse underlining the importance of the creation of new algorithms able to handle such
challenges. In line with this research, [192] proposed a projective Dictionary learning based
illicit Drug Abuse face Classification (DDAC) framework to effectively detect and separate
normal faces from faces affected by drug abuse. The authors claimed that with this
preprocessing step face recognition algorithms can improve their performance on faces
affected by drug abuse. In [194], a two-step network was proposed to overcome the
challenge presented by those drug affected faces. A scattering transform (ScatNet) based
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face recognition algorithm is proposed and furthermore optimised with an autoencoder-style
mapping function (AutoScat) to learn how to encode the ScatNet representation of a face
image in order to reduce the computation time.

2.3. Deep Model-related Influencing Factors

In recent years, the so-called conventional face recognition methods have been overcome
by deep learning-based solutions in terms of recognition performance. The shift toward this
type of solutions is motivated by their higher accuracy, automatic learning, and significant
performance achievements in many computer vision tasks (e.g., image segmentation and
classification, object detection and recognition, characters recognition).

Deep face recognition technology exploits the hierarchical structure of deep learning
networks to learn discriminative facial representations from either a face image or a series of
facial frames from a video. The learned facial representations are not available for the
conventional approaches and can be hard to understand by humans. Consequently, deep
learning techniques have boosted face recognition research and the deployment of
real-world face recognition applications. Due to the current importance of deep face
recognition technology, this section is dedicated to the key factors influencing the recognition
performance of this type of technology. Regardless of its high level of success, as
demonstrated by the wide dissemination of deep face recognition systems, this technology
still presents vulnerabilities, notably related to the large variety of deep learning algorithms’
solutions, for instance related to the adopted architectures or training process. In this
context, this section reviews the major deep learning technology elements that can impact
face recognition performance, namely network architecture, training strategy, loss function,
and model parameters reduction.

2.3.1. Deep Network Architecture

The choice of the deep network architecture has received considerable attention in deep
face recognition research. In practice, most deep face recognition systems profit from the
hierarchical structures of deep learning networks to learn discriminative face representations
and adapt to particular application domains. For instance, the performance achieved by
convolutional neural networks (CNNs) in various research areas has also proved to be a
very effective architecture for face recognition. Figure 9 presents a list of successful deep
learning-based face recognition architectures, categorised into four groups, namely
CNN-based, Auto-

Encoder-based, Generative Adversarial Network (GAN)-based, and Deep Reinforcement

Learning (RL)-based architectures.

Deep Face Recognition Architectures
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CNN-Based Auto-Encoder -Based GAN-Based Deep RL-Based

ResNet50 [91] U-net [92] R3AN [93] Fair Loss [13]

SqueezeNet DC-SSDA [94] ACSFC [95] ADRL [96]

ResNet-64 [97] D2AE [98] AFRN-GAN [99] RL-RBN [14]

ResNet-27 [100] CAN [71] Age-cGAN [101]

LightCNN-v29[102] DA-GAN [101]

Deep CNN [103] CpGAN [104]

MTCNN [105] FI-GAN [106]

ReST [107]

VGG16 [108]

NAN [109]

DDRL [110]

PDA [111]

Deepface [5]

DeepID [112]

VGGFace [113]

FaceNet [6]

VGGFace2 [91]

VGG-16 [58]

GoogLeNet [114]

ArcFace [60]

MagFace [1]

Figure 9: Overview of deep face recognition architectures.

2.3.2. Training Strategy

Generally, the training strategy comprises multiple hyper-parameters and techniques to
adjust these hyperparameters, notably:

● Batch Size: Defines the number of training samples to propagate through the
network before updating the internal model parameters (in one iteration). There are
three batch size modes, namely:
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- Batch Mode (Batch Gradient Descent): The batch size is equal to the total
number of samples in the dataset.

- Mini-batch Mode (Mini-batch Gradient Descent): The batch size is set to variate
among a range of one to the total number of samples in the training dataset.

- Stochastic Mode (Stochastic Gradient Descent): The batch size is set to one.
Hence, the parameters of the neural network are updated after each sample.

● Learning Rate: Tuning parameter used to control the adjustment of the neural
network weights with respect to the loss function. The lower the learning rate value,
the slower the moves toward the minimum of the loss function.

● Number of Epochs: Defines the number of times the learning algorithm passes
through the entire training dataset before that learning algorithm gets updated. In
other words, one epoch means that each sample in the training dataset has one
opportunity to update the internal model parameters. Generally, the number of
epochs is set to be large, e.g., hundreds or thousands, to allow running the learning
algorithm to minimise the error between the learning algorithm prediction output and
the target true value.

● ML Optimization: Defines the process of adjusting the hyperparameters of the
neural network to reduce the losses by using optimization techniques (henceforth just
mentioned as optimizers). Stochastic gradient descent[115], Adam [116], Adagrad
[117], and AdaDelta [118] are examples of optimizers used for face recognition.

● Activation Functions: Includes the set of functions used to help the neural network
learn complex patterns in the data by converting the output of the previous neurons
into some form that can be taken as the input of the next neurons. ELU, ReLU,
Sigmoid, and Softmax are examples of activation functions4.

● Regularisation: Includes the set of techniques used to lower the complexity of the
model during the training, in order to prevent the overfitting issue and thus improve
the accuracy of the model when facing new data. L1 [119], L2 [120], and dropout
[121] are the most popular and efficient regularisation techniques.

The appropriate setting of these two hyper-parameters impacts the whole optimization
process associated with the training and drives the convergence of the model. Typically, the
learning rate is lowered when the training iterations increase to obtain better performance
[122][123]. Regarding the batch size, it is well known that a large mini-batch ameliorates the
use of the computational resources [124], since quicker updates can be performed by only
training with a portion of the dataset. Moreover, using a mini-batch may generate
randomness in the training and boost the generalisation performance [125][126].

2.3.3. Loss Function

In the context of deep networks, the loss function plays a fundamental role as it measures
the error between the network prediction output and the target true value. If the network’s
predictions are off, the loss function outputs higher values; if the predictions are good, the

4 https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html#elu
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loss function outputs low values. In this context, the amplitude of the error indicates how far
the network is from optimal operation.

In the field of deep face recognition, the loss function plays a crucial role in determining the
deep face model’s performance since it determines what the network must learn. Basically,
the loss function is used in the training stage to assist in minimising the facial features’
intra-class variation and maximising the facial features’ inter-classes variation, consequently
leading to a better model in the next training iteration, and consequently to better decisions.

In recent years, it was noticed that the performance accuracy of deep face recognition
systems tends to saturate when using a deeper neural architecture [59]. Thus, several
studies have been developed to propose novel deep face recognition systems with more
suitable loss functions for deep face recognition algorithms [100][127][128][129][130][131]
[132][133][134]. Generally, the new loss functions are mostly created by modifying the
classical loss functions, for instance by adding a penalty term, or a square sum of the
distance between the model’s predicted values and the true values, to optimise the original
loss function (e.g., Softmax loss function, large-margin Softmax, or SphereFace). ArcFace
[60] and MagFace [1] are examples of novel and well-performing loss functions used in face
recognition. ArcFace incorporates an additive angular margin on the loss function to get
highly discriminative features for face recognition while MagFace optimises the facial
features with adaptive margin and regularisation based on its magnitude to learn
well-structured within-class facial feature distributions. Figure 10 shows examples of loss
functions used in deep face recognition algorithms, including the new algorithms derived
from the Softmax loss function.
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Figure 10: Loss function metrics used in deep face recognition.

2.3.4. Model Parameters Reduction

Face recognition models associated with deep neural networks may include many millions of
parameters. This massive number of parameters complicates the deployment of such
models, notably on embedded devices and platforms. Thus, the process of reducing the
model’s parameters (referred to as model compression in some existing work [141][142]) is
becoming necessary to minimise the data size associated with the deep learning model. To
accomplish this, the convolutional layers may be replaced with smaller size blocks still
performing similar tasks, for instance by replacing 3x3 filters with 1x1 filters, or reducing the
number of input channels to 3x3 filters, with the ultimate goal of reducing the model’s
memory footprint by [141][143] storing a lower number of weights and/or adopting a
simplified convolutional layer structure. However, since model parameter reduction
effectively changes the model to a different, less-ideal, model [142], a deep face recognition
performance reduction penalty is often associated with the complexity reduction.
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2.4. Summary

In this section, a systematic review of the influencing factors affecting the performance of
deep learning-based face recognition systems is presented. The behaviour of face
recognition systems is highly related to these influencing factors. Therefore, understanding
the role of these factors and their effect on the overall performance of deep learning-based
face recognition is an effective tool to explain their decision making, thus increasing the level
of trust in face recognition technology.

In addition, the availability and quality of the facial datasets play a pivotal role in face
recognition technology development. The impact of facial datasets is mainly linked to their
dimensions and proper labelling. Previously, small facial datasets were mostly available. As
deep learning-based face detection and recognition solutions have been developed, sizable
datasets became essential. Thus, many new datasets have been built considering multiple
variations (e.g. variety of racial cohorts, different age ranges, etc.). Table 1 (resp. Table 2)
lists some of the recent and most used facial image (resp. videos) datasets.

Table 1: Image datasets for face recognition.

Dataset Name Year #Images # Individuals Images
Resolution

Face
Variations

Available

AgeDB [144] 2017 16516 570 - - Age Public

UHDB31 [32] 2017 25872 77 2,048×2,448
1,024×1,224

512 ×612
256 ×306
128 ×153

- Pose
-Illumination
- Resolution

Public

KomNET [145] 2020 39600 - 224 × 224 - Public

MS-Celeb-1M [64] 2016 10 M 100 k - - Public

CAF [70] 2018 313986 4668 - - Age
- Pose
- Race

Private

LFW [146] 2008 13233 5749 250×250 - Pose
- Illumination
- Focus
- Resolution
- Expression
- Age
- Gender
- Race
- Occlusions
- Make-up

Public

IMDb-Face [147] 2018 1.7 M 59 k - - Label
Noise-controlle
d

Public
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GANFaces-500k
[148]

2018 500 k 10 k 108×108 - Pose
- Illumination
- Expression

Public

GANFaces-5M
[148]

2018 5,000 k 10 k 108×108 - Pose
-Illumination
- Expression

Public

CPLFW [149] 2018 11652 5749 250 ×250 - Pose Public

CelebFaces [150] 2013 87, 628 5436 - - Private

MegaFace [151] 2016 1 M 690 k - - Pose
- Age

Public

CASIA-WebFace
[152]

2014 10575 494414 256×256 - Ages
- Expression
- Illumination

Public

VGG Face [113] 2015 2.6 M 2622 - - Public

VGG Face2 [91] 2018 3.31 M 9131 137×180
(Average

resolution)

- Pose
- Age
- Low Label
Noise

Public

RMFRD [153] 2020 95 k 525 250×250 - Masked Face Public

SMFRD [153] 2020 500 k 10 k - - Masked Face Public

Large Age-Gap
(LAG) [154]

2017 3828 1010 - - Age Public

CALFW [76] 2017 12000 - 250 ×250 - Age
- Gender
- Race

Public

FG-NET [73] 2002 1002 82 300 x 400 - Age Public

CACD-VS [75] 2015 4000 2000 - - Age Public

MORPH Album 2
[74]

2009 55000 13000 - -Gender
- Race

Public

Table 2: Video datasets for face recognition.

Dataset
Name

Year #Videos #Individuals #Video
Frames

Frame
Resolution

Face
Variations

Available

YouTube
Celebrities
(YTC) [155]

2018 1910 47 7 to 400 20×20 - Pose
- Illumination
- Expression

Public

YouTube
Face (YTF)
[156]

2017 3425 1595 48 to
6070

100×100
-

Public
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Celebrity-10
00 [157]

2014 159726 1000 2405379
(Total)

20×20
(minimum)

- Expression
- Pose

Private

VDMFP
[158]

2005 958 297

- -

- Illumination
- Gender
- Race
- Race

-

UMDFaces
[159]

2017 22075 3107 2405379
(Total) -

- Gender
- Pose

Public

IARPA
Janus
Benchmark
A (IJB-A)
[160]

2015 2042 500
- -

- Pose Public

IARPA
Janus
Benchmark-
B (IJB-B)
[161]

2017 7011 1845 55026
(Total) - -

Public

IARPA
Janus
Benchmark-
C (IJB-C)
[162]

2018 11779 3531 117542
(Total)

- - Race
- Occlusion

Public

FaceSurv
[163]

2019 460 252 91646
(Total) -

- Pose
- Occlusion
- Illumination

Public

PaSC [164] 2013 2802 265 - - - Pose Public

The following section will survey the state-of-the-art mechanisms and models that express
and assess the impact of the reviewed influencing factors, notably alone and when they
interfere between them.

3. Publications Assessing the Impact of
Influencing Factors

Recently, multiple studies assessing the impact of the influencing factors on face recognition
systems have been made available in the literature. The main objective of this section is to
review some publications addressing these studies to understand the role and impact of the
influencing factors on the face recognition systems’ decision making, notably by modelling
the variation of the face recognition accuracy as a function of relevant parameters related to
the influencing factors, e.g. JPEG quality factor or image resolution.

3.1. Overview of Publications

An exhaustive review of the literature addressing the impact of the influencing factors on
face recognition systems has been performed. These publications address one or more of
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the influencing factors surveyed in Section 2 and describe and evaluate the decision making
process of both academic and commercial-off-the-shelf (COTS) face recognition systems.
Most of these face recognition systems use AI algorithms, with only a few of them relying on
hand-crafted algorithms. Table 3 lists the main characteristics of a selection of the surveyed
publications. The first, second, and third columns identify the relevant publications, notably
the reference number, publication year and publication journal or conference, respectively.
The addressed influencing factors, the evaluated face recognition solutions, and the used
facial datasets are presented in the three last columns, respectively.

Table 3: Overview of publications on the impact of relevant influencing factors on face
recognition systems performance.

Ref. Year Conference/
Journal

Influencing
Factors

Face Recognition
Models

Datasets

[165] 2005 - International
Conference on
Pattern Recognition
and Image Analysis

- JPEG Image
Compression

- JPEG2000
Image
Compression

- Principal Component
Analysis (PCA)

- Independent
Component Analysis
(ICA)

- Linear Discriminant
Analysis (LDA)

- FERET

[166] 2006 - International
Conference on
Control,
Automation,
Robotics and Vision

- Image
Resolution

- Principal Component
Analysis (PCA)

- Linear Discriminant
Analysis (LDA)

- BioID
- High-quality
FRCG

- Low-quality
FRCG

[167] 2009 - IEEE Computer
Society Conference
on Computer Vision
and Pattern
Recognition
Workshops

- Plastic Surgery - Principal  Component
Analysis (PCA)

- Fisher Discriminant
Analysis (FDA)

- Geometric Features
(GF)

- Local Feature Analysis
(LFA)

- Local Binary Pattern
(LBP)

- Neural Network
Architecture based 2D

- Log Polar Gabor
Transform (GNN)

-

[168] 2010 - IEEE Computer
Society Conference
on Computer Vision
and Pattern
Recognition –
Workshops

- Illumination
- Focus
Variation

- An Illumination Model
- A Focus Model

- CMU-PIE
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[169] 2012 - IEEE Transactions
on Information
Forensics and
Security

- Gender
- Age
- Race

- Cognitec’s FaceVACS
v8.2

- PittPatt v5.2.2
- Neurotechnology’s
MegaMatcher v3.1

- Local binary patterns
(LBP)

- Gabor features
- Spectrally Sampled

Structural Subspace
Features algorithm
(4SF@)

-Images from
Pinellas County
Sheriff’s Office

[170] 2015 - IEEE International
Conference on
Computer Vision
Workshop

- Deep Face
Model
Architecture

- DeepFace
- DeepID
- WebFace

- LFW

[171] 2016 - International
Conference of the
Biometrics Special
Interest Group

- Image
Degradations:

. Motion Blur

. Noise

. Compression

. Colour

Distortions
. Occlusion

- AlexNet
- VGG-Face
- GoogLeNet

- LFW

[172] 2016 - IEEE Global
Conference on
Signal and
Information
Processing

- Limited
Training Data

- Noisy Labels
Data

- CNN - CASIA
WebFace
- LFW
- WebFace

[173] 2017 - IEEE Conference
on Computer Vision
and Pattern
Recognition
Workshops

- Age - Tow State-of-the-art
Commercial-off-the-
shelf (COTS) Face
Recognition Systems

- PCSO
- MSP

[174] 2017 - IET Biometrics - Illumination
- Noise

- GoogLeNet
- SqueezeNet
- VGG-Face
- AlexNet

- VGG-Face
- LFW

[147] 2018 - European
Conference on
Computer Vision

- Dataset
Quality (Noisy
Labels)

- Attention-56 - MegaFace
- MS-Celeb-1M
- IMDb-Face

[175] 2018 - International
Conference on
Electrical,
Electronic and
Computing
Engineering

- Facial
expression

- Illumination

- Face Recognition Code
Based on Histogram of
Oriented Gradient
(HOG) Features
Extraction

- Support Vector
Machines (SVM)
Classifier

-

[176] 2019 - IET Biometrics - Cross-dataset
Training Bias

- Dataset's
Feature Space
Bias

- LBP over
landmarks

- VGG-Face
- ResNet

- FERET
- LFW
- IJB-A
- O2FN
- MobBIO
- FaceSampler
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[177] 2019 - IEEE/CVF
Conference on
Computer Vision
and Pattern
Recognition
Workshops

- Children vs.
Adults Bias

- Five Deep Learning
Commercial-off-the-
shelf  (COTS) face
recognition systems

- Two Government-off-
the-shelf (GOTS) Face
Recognition Systems

- An Open Source
Algorithm

- ITWCC−D1
- LFW−D1

[178] 2019 - National
Conference on
Computer Vision,
Pattern Recognition,
Image Processing,
and Graphics

- Loss Function - ResNet
- MobileNet

-
CASIA-Webface
- MS-Celeb-1M
- LFW

[66] 2019 - NIST
Interagency/Internal
Report (NISTIR) –
8280

- Race
- Gender
- Age

- 106 Face Recognition
Algorithms

- Domestic
Mugshots

- Application
Photographs

- Visa
Photographs
- Border
Crossing
Photographs

[179] 2020 - IEEE Transactions
on Technology and
Society

-  Race - ArcFace
- VGGFace2

- MORPH

[86] 2020 - IEEE Winter
Applications of
Computer Vision
Workshops

- Gender - ArcFace - MORPH
- Notre Dame
- Asian Faces
Dataset (AFD)

[67] 2020 - IEEE/CVF Winter
Conference on
Applications of
Computer Vision

- Age - VGGFace2 (ResNet-
50)

- FaceNet
- ArcFace

- VGGFace2
- MSCeleb-1M
- MS-Celeb-1M
V2

[142] 2020 - Neurocomputing - Loss Functions
- Model
Compression

- Network
Architecture

- Data
Augmentation

- Deep Face
Model
Architecture

- VGG-16
- GoogLe-Net
- Face- ResNet
- ResNet-50

-
CASIA-WebFac
e
- UMD-Faces
- UMD-CASIA
- CFP Frontal-

Frontal
- LFW
- CACD-VS
- YTF

[180] 2020 - International
Conference of the
Biometrics Special
Interest Group

- Occlusion by
Mask

- ArcFace
- SphereFace
- A Commercial Face
Recognition System

-  A New
Collected

Dataset

[181] 2020 - IEEE/CVF
Conference on
Computer Vision

- Loss Functions - ARFace - MS-Celeb-1M
- FG-Net
- SCface
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and Pattern
Recognition
Workshops

- IJB-C
- ARFace

[87] 2020 arXiv:2002.02934v2 - Gender
Balance in
Training Data

- ResNet-50 with three
different loss functions
. Standard Softmax

Loss
. Combined Margin

Loss
. Triplet Loss

- VGGFace2
- MS1MV2
- IJB-B
- MORPH
- Notre Dame

[182] 2020 - Journal of King
Saud University –
Computer and
Information
Sciences

- Deep Face
Model
Architecture

- AlexNet
- GoogleNet
- Inception V3
- ResNet50
- SqueezeNet

-  FG-NET

[183] 2021 - Computers - Racial Balance
in the Dataset

- Deep Face
Model
Architecture

- ML algorithms:
. Support Vector

Classifier (SVC)
. Linear Discriminant

Analysis (LDA)
. K-NearestNeighbor

(KNN)
. Decision Trees(DT)

. Logistic
Regression

(LR)
- DL algorithms:

. AlexNet

. VGG16

. ResNet50

- FERET

[184] 2021 - IEEE Transactions
on Biometrics,
Behaviour, and
Identity Science

- Race - A2011
- A2015
- A2019
- A2017b

-

[56] 2021 - IEEE International
Conference on
Image Processing

- Facial
Expression

- ResNet-50
- LResNet100E-IR

- CFEE
- CK+
- CelebA
- MS-Celeb-1M

A subset of the publications presented in Table 3 are selected for further analysis, according
to the following criteria:

- Consider an AI-based face recognition system;

- Propose a relevant study on the impact of one or more influencing factors;

- Published at a top journal or conference.

Table 4 lists the selected subset of publications on the impact of the influencing factors on
face recognition systems to be further analysed in this report. As illustrated in the table, the
publications are classified according to the influencing factors they address (one or more);
some of the previously identified influencing factors are not covered by any of the selected
publications.
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Table 4: Summary and classification of the selected publications regarding the influencing
factors.

[183] [169] [173] [87] [147] [180] [181] [174] [56] [67] [66]

Data
Quality-
related
Factors

Occlusion ✓ ✓

Varying
Illumination ✓

Pose
Variation

Image Resolution

Noise ✓

Availability and
Quality of Face
Datasets ✓ ✓

Image
Compression ✓

High dynamic
range

Human-rel
ated
Factors

Facial Expression
Changes ✓

Demographic
Effects ✓ ✓ ✓ ✓ ✓

Plastic
Surgery

Deep
Model-relat
Factors

Deep Model
Architecture ✓

Loss
Function ✓

Training Strategy

Model Parameter
Reduction

In the next sections, the publications listed in Table 4 are reviewed in more detail. The
publications are presented in sequence according to the influencing factors expressed,
notably data quality, human, and deep model related influencing factors. For each
publication, the analysis will consider: i) objectives; ii) methodology pursued to study and
express the effect of the influencing factors; and iii) strengths and weaknesses of the
methodology and mechanisms adopted to study the impact of the influencing factors.
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3.2. Publications Assessing the Impact of Data
Quality-related Influencing Factors

This sub-section provides additional detail about the publications listed in Table 4 addressing
data quality-related influencing factors; each publication is identified by the associated
publication.

A. N. Damer, J. H. Grebe, C. Chen, F. Boutros, F. Kirchbuchner, and A. Kuijper,
“The Effect of Wearing a Mask on Face Recognition Performance: An
Exploratory Study,” International Conference of the Biometrics Special Interest
Group, Darmstadt, Germany, September 2020 [180].

● Influencing Factor(s): Occlusion by medical mask.
● Objectives:

▫ To propose a carefully collected masked-face dataset that imitates realistically
diverse face capture scenarios, similar to the circumstances in automatic
border control, where illumination and background may change.

▫ To study the impact of wearing medical masks on the behaviour of one
commercial off-the-shelf (COTS) and two academic face recognition systems,
e.g., ArcFace [60] and SphereFace [130] in a verification scenario.

● Methodology Description: The methodology starts by proposing a new database to study
the effect of occlusions by medical masks on the face recognition performance. The facial
data are collected in an indoor daylight scenario during three sessions (days),
namely Session 1, Session 2, and Session 3. The images of Session 1 are used
as reference images (R), while the images of Session 2 and Session 3 are used as
probe images (P).

In addition, two data capturing conditions are considered for each scenario, including
the presence/absence of the medical mask and the presence/absence of artificial
illumination, which generates multiple subsets for each scenario (see Table 5).

Table 5: Overview of the database structure.

Session Session 1: References Session 2 and 3: Probes

Data split BLR M1R M2R BLP M1P M2P M12P

Illumination No No Yes No No Yes Both

Mask No Yes Yes No Yes Yes Both

BLR: Baseline reference.
M1R: Mask one reference.
M2R: Mask two references.
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BLP: Baseline probe.
M1P: Mask one probe.
M2P: Mask two probes.
M12P: Data joined from M1P and M2P.

After, four experiments are performed to assess the effect of wearing medical masks
on the performance of face recognition pipelines:

○ Experiment 1: Measures the recognition performance without a mask (N:N
comparison of the subsets BLR and BLP).

○ Experiment 2: Measures the recognition performance when wearing a mask
(N:N comparison of the subsets BLR and M1P).

▫ Experiment 3: Measures the recognition performance in the presence of the
mask and electric illumination (N:N comparison of the subsets BLR and M2P).

▫ Experiment 4: Measures the overall recognition performance (N:N comparison
of the subsets BLR and M12P).

● Modelling the Impact of Influencing Factors: To assess the impact of wearing a
mask on the face recognition performance, the genuine and impostor score
distribution of Experiment 1 (absence of the mask) and the three remaining
experiments (presence of the mask) are compared.

Figure 11 illustrates the results of the comparison for the three assessed face
recognition solutions. For each face recognition solution, the genuine score
distribution (blue) is strongly shifted towards the impostor distribution (red) compared
to the BLR- BLP setup (green) (see (a), (d) (g)), which leads to a performance
degradation. Additionally, this shift becomes stronger when masked images are
captured under artificial illumination (see (b), (e) (h)). Moreover, it is found that the
impostor score distributions are less influenced by the masked probe images (yellow
curves are mostly identical to red curves).
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Figure 11: Comparison of score (similarity) distributions for the “baseline” BLR-BLP genuine
and impostor distributions regarding the distributions including “masked” face probes

BLR-M1P (a, d, g); BLR-M2P (b, e, h); and BLR-M12P (c, f, i).

Figure 12 illustrates the face recognition verification performance for the three
evaluated face recognition solutions under the four experimental settings, i.e.
experiments 1, 2, 3, 4. It may be seen that the COST face recognition solution
preserves its verification performance, while the SphereFace and ArcFace
performances have a performance degradation when masked facial probes are used
(BLR-M1P). Moreover, the degradation becomes stronger when facial data are
captured under artificial illumination (BLR-M2P and BLR-M21P).
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Figure 12: Verification performance (as ROC curves) for the three investigated face
recognition systems, ArcFace(a); SphereFace (b); and COTS (c).

● Strengths and Weaknesses:
○ (+) In addition to the academic face recognition solutions, the publication uses

a commercial face recognition pipeline which achieves one of the best
performances according to the recent NIST report [124], which increases the
relevance of  the obtained results.

○ (+) The publication enriches the performance analysis by using multiple
verification performance metrics, namely failure to extract rate (FTX), equal
error rate (EER), false non-match rate (FNMR), FMR100, FMR1000,
ZeroFMR, and receiver operating characteristic (ROC) curves.

○ (-) The suggested dataset is built using day-light images, which might create
biases when night-captured images are presented in the
identification/verification stage.

B. K. Grm, V. Štruc, A. Artiges, M. Caron, and H. K. Ekenel, “Strengths and
Weaknesses of Deep Learning Models for Face Recognition Against Image
Degradations” IET Biometrics, vol. 7, pp. 81–89, October 2017 [174].

● Influencing Factor(s): Blur, JPEG compression, noise, image brightness, contrast,
and missing pixels.
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● Objectives: To study the influence of image quality degradation, e.g. blur, JPEG
compression, noise, image brightness, contrast and missing pixels, on the
performance of four DL-based face recognition systems, namely AlexNet,
VGG-Face, GoogLeNet, and SqueezeNet.

● Methodology Description: The methodology consists in conducting a rigorous
experiment to assess the performance of face recognition including three stages:

○ Train the used deep face recognition solutions from scratch to obtain a fair
comparison of their expressivity given the same training dataset, i.e. VGG
face.

○ Apply image distortions, notably blur, JPEG compression, noise, image
brightness, contrast and missing pixels, with different intensities to the probe
images (see Table 6).

Table 6: Applied image degradation factors, and associated parameters and intensities.

Blur Apply Gaussian filters to the probe images with different standard deviations σ,
ranging from 2 to 20.

Compression Encode the probe images with the JPEG coding standard at different quality presets,
e.g. of 1, 3, 5, 10, 15, 20, 25, 30, 35 and 40.

Gaussian noise Add additive Gaussian noise to probe images with a mean of 0 and various standard
deviations σ,  ranging from 20 to 200.

Salt-and-pepper
noise

Truncate all colour components of each probe image pixel to zero with a probability
of p/2 and set them to 255 with a probability of p/2 (p between 0.02 and 0.5).

Brightness Multiply the pixel intensities of all probe images by a brightness factor and clip the
resulting pixel values to the valid dynamic range between [0,255].

Contrast Subtract the central value of the dynamic range from all prob images and multiply the
centred images by a contrast factor (between 0.03 and 0.79) and add an offset.

Missing pixels Remove contiguous pixel areas, e.g. mouth, nose, periocular and eye from the probe
images.

○ Evaluate the performance of the deep face recognition solutions using the
following verification scenario:

- Consider the facial features output by each evaluated face recognition
system as the image descriptor of the input facial image.

- Conduct one-to-one matching between the facial image descriptors
via a cosine-based similarity score using equation (1):

(1)

where,

: Input facial images to be matched (probe and gallery images).𝑥
1
,  𝑥

2
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: Selected deep facial recognition model.𝑓(.)

: Descriptors of the images respectively.𝑦
1
,  𝑦

2
𝑥

1
,  𝑥

2

: Cosine similarity.δ(.)

T: Predefined decision threshold.

○ Report the results using labelled faces in the wild (LFW) verification protocol
metrics [185], including the mean and standard deviation.

○ Conduct a comparative evaluation of the four DL-based face recognition
systems.

● Modelling the Impact of Influencing Factors: In the following, some of the
obtained experimental results are presented, namely the impact of image blurring,
JPEG compression, Gaussian noise and salt-and-pepper noise.

○ Impact of image blurring and JPEG compression

The left chart in Figure 13 shows a quick drop of all models’ performance with the
increase of image blurring intensity which proves the significant influence of
image blurring on the recognition performance. Contrarily, the right chart in the
same figure shows that the evaluated models are mostly unaffected by the JPEG
compression until the intensity of the compression corresponds to very low levels
of quality.

Figure 13: Impact of image blurring (left) and JPEG compression (right) on the recognition
performance of the four deep face recognition systems.

○ Impact of Gaussian and Salt-and-pepper noise
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Figure 14 illustrates the verification accuracy of the four recognition systems
under Gaussian and Salt-and-pepper noises. The verification accuracy charts
show that the evaluated systems behave similarly for the Gaussian noise (left)
and Salt-and-pepper noise (right) with a similar impact on the models’ recognition
performance.

Figure 14: Impact of Gaussian (left) and Salt-and-pepper (right) noise on the recognition
performance of the four deep face recognition systems.

● Strengths and Weaknesses:
○ (+) The face recognition models are trained from scratch in an unified

environment, which leads to a fair comparison among them.
○ (-) The publication evaluates the face recognition systems only under a

verification scenario. The face recognition systems need to be evaluated also
under the identification scenario to know if they are suitable for both the
verification and identification tasks.

C. V. Albiero, K. Zhang, and K. W. Bowyer, “How Does Gender Balance in Training
Data Affect Face Recognition Accuracy?” IEEE International Joint Conference
on Biometrics, Houston, TX, USA, October 2020 [87].

● Influencing Factor(s): Gender distribution in the training dataset.
● Objectives: To study how the gender distribution of the training data impacts the

face recognition accuracy and how the female under-representation in the training
data degrades the female recognition accuracy in the testing stage.

● Methodology Description: The methodology consists in evaluating the performance
of the ResNet-50 face recognition system via the following steps:

○ Generate seven subsets from each of the VGGFace2 and MS1MV2 training
datasets. The first and second subsets are the initial and gender-balanced (in
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terms of subjects and facial images per subject) datasets, respectively, while
the remaining subsets are smaller subsets with different ratios between
females and males.

○ Train the ResNet-50 model on the various created subsets using three loss
functions, notably standard softmax loss, combined margin loss, and triplet
loss.

○ Evaluate the face recognition performance of the trained models using three
test datasets, notably IJB-B, MORPH, and Notre Dame.

● Modelling the Impact of Influencing Factors: In the following, the experimental
results of the publication on the gender variation and gender balance in the training
data tests are presented.

○ Gender variation in the training data

Table 7 presents the gender recognition accuracy of the evaluated face
recognition models on the MORPH Caucasian dataset. It is clear from the
table that the best accuracy on males (resp. females) is when 100% male
(resp. females) training datasets are used. Additionally, it can be seen that
the female accuracy overpasses the male accuracy only when 100%
female data is used. These results refute the obvious expectation stating
that the gender with higher training data gets higher test accuracy.

Table 7: Gender accuracy (%) on the MORPH Caucasian dataset with true accept rate (TAR)
at 0:001% false accept rate (FAR) with different gender balance proportions.

○ Gender balance in the training data

Table 8 presents the gender recognition accuracy of the evaluated face
recognition systems on the MORPH African American dataset. Looking at the
female and male accuracies for M50F50 (same ratios of males and females
training data are used), it can be noticed that there is a gap between both
genders’ accuracies indicating that gender balance in the training data does not
translate into gender balance in the test accuracy.

Table 8: Gender accuracy (%) on the MORPH African American dataset with true accept rate
(TAR) at 0:001% false accept rate (FAR) with different gender balance proportions.
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● Strengths and Weaknesses:
○ (+) Extensive experiments are performed, totaling 42 training conditions.
○ (+) Race and age-balanced training datasets are used to minimise the race

and age biases during the experiments.
○ (-) The publication evaluates only one face recognition system.

D. W. Fei et al., “The Devil of Face Recognition is in the Noise,” European
Conference on Computer Vision, Munich, Germany, September 2018 [147].

● Influencing Factor(s): Noisy labels in the training dataset, i.e. label errors raising
deviations in the original dataset.

● Objectives:
○ To understand the source of label noise and assess its influence on the

performance of CNN-based face recognition systems using the newly
generated free-noise IMDb-Face dataset and two subsets of MS-Celeb-1M
and MegaFace datasets.

○ To build a free label noise face recognition dataset for the community.
● Methodology Description: The methodology consists in assessing the impact of

noisy labels in training datasets by fulfilling the following objectives:
○ Generate free noise label subsets for the MegaFace and MS-Celeb-1M

datasets.
○ Build a new large-scale noise-controlled IMDb-Face dataset.
○ Analyse the label noise characteristics of the original and cleaned datasets of

MegaFace and MS-Celeb-1M.
○ Assess the association between label flips and outlier noises by injecting

noise on the training labels to simulate corruption.
○ Explore techniques to enhance data cleanliness strategies.

● Modelling the Impact of Influencing Factors: In the following, some of the
experimental results of the publication are presented.

○ Effect of noise on cleaned IMDb-Face dataset

The proposed free-noise IMDb-Face dataset is assessed under two types of
noise, namely:

Deliverable D2.1 45



Measuring and Improving Explainability for AI-based Face Recognition

- Label flips: The image has erroneously been given the label of another class
within the dataset.

- Outliers: The image does not belong to any of the classes under
consideration, but mistakenly has one of their labels.

The experiments are performed via the following strategy:

- Infecting the dataset with the label flips and outliers separately by increasing
the degree of the noise in the dataset by 10%, 20% and 50%.

- Fixing the size of clean data and diluting it with label flips.

Figure 15 illustrates the effect of the label flips and outliers on the Attention-56 model
trained with three loss functions, notably Softmax loss, Centre loss, and A-Softmax
loss, on the IMDb-Face dataset. The experimental results showed that:

- Label flips severely deteriorate the performance of the Attention-56 model,
more than outliers.

- A-Softmax, which is used to achieve a better performance on a clean dataset,
becomes worse than Centre loss and Softmax in the high-noise region.

- Outliers seem to have a less abrupt effect on the recognition performance
across all losses.

Figure 15: 1:1M rank-1 identification results on MegaFace benchmark: (a) introducing label
flips to IMDb-Face; (b) introducing outliers to IMDb-Face.

○ Comparison of IMDb-Face with other face datasets

The performance for the IMDb-Face dataset is compared with the performance of
other well-established face recognition training datasets, including CelebFaces,
CASIA-WebFace, MS-Celeb-1M(v1), and MegaFace. Table 9 illustrates the
comparative performance results with the aforementioned datasets in terms of
Rank-1 identification accuracy on the MegaFace dataset benchmark. It is
observed that the IMDb-Face dataset is competitive as a training source despite
its smaller size, which validates its cleanliness and effectiveness.
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Table 9: Recognition performance when using different face datasets for training.

Dataset #Iden. #Imgs. Rank-1 (%)

Softmax Centre Loss A-Softmax

CelebFaces 10k 0.20M 36.15 42.54 43.72

CASIA-WebFace 10.5k 0.49M 65.17 68.09 70.89

MS-Celeb-1M(V1) 96k 8.6M 71.70 73.82 73.99

MegaFace 670k 4.7M 64.32 64.71 66.95

IMDbFace 59k 1.7M 74.75 79.41 84.06

● Strengths and Weaknesses:
○ (+) The publication proposes a large-scale noise-controlled IMDb-Face

dataset, which shows competitive performance compared to alternative
well-established face recognition training datasets.

○ (-) The publication is based on human annotators to clean large-scale face
datasets, which may impact the quality of the cleaned data.

3.3. Publications Assessing the Impact of Human-related
Influencing Factors

This subsection will review in more detail the publications listed in Table 4 addressing
human-related influencing factors; each publication will be identified by the associated
publication.

A. Deb, L. Best-Rowden, and A. K. Jain, “Face Recognition Performance under
Ageing,” IEEE Conference on Computer Vision and Pattern Recognition
Workshops, Honolulu, HI, USA, July 2017 [173].

● Influencing Factor(s): Age.
● Objectives:

○ Quantify the influence of ageing on the performance of two state-of-the-art
commercials off-the-shelf face recognition systems, notably (COTS-A and
COTS-B. using two large-scale longitudinal datasets of mugshots
(photographic portrait of a person taken when he/she is arrested by police),
namely Pinellas County Sheriff’s Office (PCSO) and Michigan State Police
(MSP).

○ Assess the variation rate of the genuine scores caused by the elapsed time
between gallery and query images.

○ Analyse the recognition performance degradation due to cohorts’ biases such
as ethnicity, gender, and the quality of the query images.
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● Methodology Description: The methodology consists in analysing the recognition
performance degradation due to elapsed time between query and gallery images
using two multilevel statistical models:

○ Level-1 model: Expresses the genuine scores variations of each subject over
time (within-subject change).

○ Level-2 model: Describes how genuine score variation differs across
subjects (between-subject variation).

In addition, to get meaningful results, the PCSO and MSP datasets are built following
three criteria:

○ The selected subjects should have a sufficient number of images over a
minimum of 5 years span (at least 5 for PCSO and 4 for MSP).

○ The acquisition of consecutive images of each subject are separated by at
least one month.

○ The youngest subject is at least 18 years old.
● Modelling the Impact of Influencing Factors: In the following, some of the

experimental results obtained with this publication are presented.
○ Gender and race across age

Figure 16 shows the population-mean trends for gender and race across age. Two main
conclusions can be derived: (1) Differences due to race and gender cohorts are symmetric
for COTS-A on PCSO and MSP datasets; (2) Race and gender effects over time are face
recognition system-independent when COTS-A and COTS-B are both evaluated on the MSP
dataset.

Figure 16: Population-mean trends in COTS-A and COTS-B genuine scores on PCSO
dataset and MSP dataset for the four demographic groups in the datasets.

● Strengths and Weaknesses:
○ (+) The publication uses two largest longitudinal face datasets (facial images

are taken over time), notably, PCSO [186], MSP.
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○ (-) The publication evaluates the face recognition systems under a verification
scenario only; evaluation for an identification scenario would also be
desirable.

B. V. Albiero, K. W. Bowyer, K. Vangara, and M. C. King, “Does Face Recognition
Accuracy Get Better with Age? Deep Face Matchers Say No,” IEEE Winter
Conference on Applications of Computer Vision, Snowmass, CO, USA, March
2020 [67].

● Influencing Factor(s): Age.
● Objectives: To investigate the recognition accuracy for three age groups, e.g. 16-29,

30-49, and 50-70, using three pre-trained deep CNN matchers with three different
loss functions:

○ VGGFace2 (ResNet-50) trained on the VGGFace2 dataset with standard
softmax loss.

○ FaceNet trained on MSCeleb-1M dataset with triplet loss.
○ ArcFace (ResNet-100) trained on MS-Celeb-1M V2 dataset with additive

angular margin loss.
● Methodology Description: The methodology consists in evaluating and comparing

three modern deep CNN face recognition models via the following strategy:
○ Investigate the role of the genuine and impostor score distributions on the

accuracy variation across three age groups, e.g. 16-29, 30-49 and 50-70.
○ Assess the impact of elapsed time between genuine pairs.
○ Investigate the role of age groups on the effect of age variation between

individuals in an impostor pair.
○ Assess the impact of balanced data in the training stage on the test accuracy.

● Modelling the Impact of Influencing Factors: In the following, some of the
experimental results of the publication are presented.

○ Impostor and genuine distributions

Figure 17 illustrates the impostor and genuine distributions for the three
evaluated face recognition systems, e.g. FaceNet (top), VGGFace2 (middle), and
ArcFace (bottom). From the nine plots it is possible to observe that the worst
impostor distribution is obtained by the old age range followed by the young age
range, while the best impostor distribution is obtained by the middle age range.

On the other hand, it may be observed that the best genuine distribution is
obtained by the young age range, which shows a higher peak of high-similarity
scores, while the middle and old age ranges obtained the same genuine
distribution.
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Figure 17: d-prime matching scores distributions for FaceNet (top); VGGFace2 (middle); and
ArcFace (bottom).

○ Influence of elapsed time

The age difference between the individual(s) in two images is represented by the
average of the match score for impostor pairs (bottom) and genuine pairs (top) as
illustrated in Figure 18.

For the genuine score, the results show that the highest similarity score is
obtained for the younger age range, while the older age range has the lowest
similarity scores.

For the impostor score plots, the results show that the older age range has the
worst (highest) average similarity scores, while the middle age range generally
has the best (lowest) average similarity scores.
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Figure 18: Match scores with increasing elapsed time between authentic (top) and impostors
(bottom) pairs for the whole dataset.

● Strengths and Weaknesses:
○ (+) The publication reveals and proves a new finding, notably contrasting

previous publications , stating that old age groups have lower recognition
accuracy values than young age groups.

○ (+) The publication provides a list of convincing arguments regarding the
reasons behind the findings of previous relevant publications.

○ (+) The testes are performed with two split datasets, e.g. African-American
male and Caucasian male, to reduce racial bias in the age effect analysis.

○ (-) Due to the lower number of female subjects and images in the MORPH
dataset (93 subjects and 286 images for African-American, and 34 subjects
and 112 images for Caucasians), the subgroup tests are performed only for
the two male subsets, which may not be reliable enough to study the age
effect across gender.

C. A. Peña, A. Morales, I. Serna, J. Fierrez, and A. Lapedriza, “Facial Expressions
as a Vulnerability in Face Recognition,” IEEE International Conference on
Image Processing, Anchorage, AK, USA, September 2021 [56].

● Influencing Factor(s): Facial expressions.
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● Objectives: To explore how facial expressions, e.g. happiness, sadness, anger,
surprise, disgust, and fear impact the recognition performance and security
vulnerability of face recognition technology.

● Methodology Description: The methodology consists in performing a series of
experiments in controlled scenarios:

○ Using three state-of-the-art face recognition systems, notably VGG16,
ResNet-50, and LResNet100E-IR, as features extractors and the Euclidean
distance metric as features matcher.

○ Using the COTS Affectiva tool to classify the datasets, notably CFEE, CK+,
CelebA, images into seven facial expressions (6 basic emotions plus neutral
face).

○ Conducting the experiments inspired by the work [187] to study facial
expression bias.

○ Analysing both genuine and impostor scores distributions by comparing each
facial expression with the remaining facial expressions.

● Modelling the Impact of Influencing Factors: In the following, some of the
experimental results of the publication are presented.

Figure 19 illustrates the distributions of the genuine and impostor matching scores
(pairs of faces) for the three face recognition systems, using the neutral expression
as reference. It is observed that the genuine distributions are different among all the
facial expressions for all three face recognition systems. In addition, it may be
observed that the genuine distributions are clearly influenced by the facial
expressions, notably more than the impostor distributions which barely change
across expressions.

Figure 19: Genuine (continuous line) and impostor (dashed line) matching score distributions
by facial expression on the CFEE database for the face matchers: (left) VGG16; (centre)

ResNet-50; and (right) LResNet100E-IR.

● Strengths and Weaknesses:
○ (+) The publication uses the COTS Affectiva tool as a preprocessing stage to

classify the datasets` images into seven facial expressions.
○ (-) The evaluated datasets include a variety of facial expressions, which

results in a heterogeneous performance.
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D. B. F. Klare, M. J. Burge, J. C. Klontz, R. W. V. Bruegge, and A. K. Jain, “Face
Recognition Performance: Role of Demographic Information,” IEEE
Transactions on Information Forensics and Security, vol. 7, no. 6, pp.
1789-1801, October 2012 [169].

● Influencing Factor(s): Age, race, and gender
● Objectives: To analyse the influence of demographic factors, notably race (Black,

White, Hispanic), gender (Female, Male), and age (18 to 30, 30 to 50, 50 to 70), on
the recognition performance of six face recognition systems, notably three
commercial (COTS-A, COTS-B, and COTS-C), two non-trainable (local binary
pattern (LBP) and Gabor) and one trainable (spectrally sampled structural subspace
features (4SF)) face recognition systems.

● Methodology Description: The methodology consists in performing three separate
matching experiments for multiple cohorts, notably male, female, young,
middle-aged, old, white, black, and Hispanic, using three separate training and test
datasets:

○ Experiment 1: Measures the relative performance within the demographic
cohort of each demographic factor for each commercial face recognition
system. For example, on the gender demographic, this experiment measures
the difference in recognition accuracy for commercial face recognition
systems on males versus females.

○ Experiment 2: Measures the relative performance within the cohort for
non-trainable face recognition models.

○ Experiment 3: Investigates the influence of the training dataset on the
recognition performance. Thus, several versions of the 4SF face recognition
models are trained on each demographic cohort. Next, the trained versions
are used to separate the testing datasets from each cohort within each
particular demographic. For example, this experiment helps to understand
how much training exclusively on females improves performance on females
and decreases performance on males.

● Modelling the Impact of Influencing Factors: In the following, some of the
experimental results of this publication are presented.

○ Gender demographic

Figure 20 shows that the three commercial face recognition systems perform
worse on females than males (subfigures (a-c)). Similarly for the non-trainable
models local binary pattern (LBP) and Gabor performed worse on the female
cohort (subfigures (d-e)). The same outperformance of the male cohort over the
female cohort is obtained with the 4SF face recognition system even when a
gender-balanced training dataset is used (subfigure (h)).

○ Age demographic

Figure 21 presents the recognition performance for the six face recognition
systems on datasets separated by cohorts within the age demographic. It is
observed that the lowest accuracy obtained for these six face recognition
systems happens for the subjects in the age range between 18 and 30 (a-f). The
COTS-A model performs similarly for both age ranges between 30 and 50 and 50
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and 70. However, COTS-B shows higher accuracy for the age range between 30
and 50 than for the age range between 50 and 70, while COTS-C performed
slightly better on the age range between 50 and 70 than the age range between
30 and 50.

Figure 20: Performance of the six face recognition systems on datasets separated by
cohorts within the gender demographic. (a) COTS-A; (b) COTS-B; (c) COTS-C; (d) Local

binary patterns (non-trainable); (e) Gabor (non-trainable); (f) 4SF trained on equal number of
samples from each gender; (g) 4SF algorithm (trainable) on the females’ cohort: (h) 4SF

algorithm (trainable) on the males’ cohort.
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Figure 21: Performance of the six face recognition systems on datasets separated by
cohorts within the age demographic. (a) COTS-A; (b) COTS-B; (c) COTS-C; (d) Local binary

patterns (non-trainable); (e) Gabor (non-trainable); (f) 4SF trained on equal number of
samples from each age; (g) 4SF system (trainable) on the ages 18 to 30 cohort; (h) 4SF

algorithm (trainable) on the ages 30 to 50 cohort; (i) 4SF algorithm (trainable) on the ages 50
to 70 cohort.

● Strengths and Weaknesses:
○ (+) The publication simultaneously explores the influence of three

demographic factors, notably race, gender and age, which helps to compare
the interference between them.

○ (+) The publication assesses the impact of the three demographic factors for
six face recognition systems, which provides a large-scale performance
analysis.

○ (-) The evaluated commercial face recognition models are black boxes, which
does not provide any insights into the demographic bias that occurred;
instead, they only output a measure of similarity between the compared facial
images.

E. P. Grother, M. Ngan, and K. Hanaoka, “Face Recognition Vendor Test (FRVT)
Part 3: Demographic Effects,” National Institute of Standards and Technology
Interagency Internal Report 8280, pp. 1-81, December 2019 [66].
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● Influencing Factor(s): Age, race, and gender
● Objectives: To study the utility and limitations of face recognition technology under

demographic groups, e.g. age, race, and gender, by analysing the performance
accuracy changes across these demographic groups.

● Methodology Description: The methodology consists in evaluating 106 pre-trained
face recognition systems using four large photograph datasets collected in US
governmental applications. The evaluation is performed in one-to-one verification and
one-to-many identification scenarios by providing:

○ Details about the recognition process.
○ Notes where demographic effects could occur.
○ Descriptions of specific performance metrics and analyses.
○ Empirical results.

● Modelling the Impact of Influencing Factors: In the following, some of the
experimental results achieved with this publication are presented.

Figure 22 illustrates the cross-age group false match rate (FMR) for one of the
evaluated face recognition systems (imperial_002) for six countries, namely Poland,
Mexico, India, Kenya, Nigeria, and China.

- Lower FMR for persons in different groups: The heatmaps show that for
all the countries and both sexes, the comparison of facial images for different
age groups obtains lower (better) FMR than for faces of the same age group.

- Highest FMR in the oldest age group: For both sexes from all countries, the
comparison of facial images of persons in the 65 years age range group or
higher yields the highest FMR.

- High FMR in the youngest age group: For both sexes, comparison of facial
images of individuals in the age range between 12 and 20 generates the
highest FMR.
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Figure 22: Cross-age false match rates (FMR) for imposters of the same sex from the age
groups given on the respective axes. Each cell depicts FMR on a logarithmic scale.

● Strengths and Weaknesses:
○ (+) The publication performs face recognition evaluation under one-to-one

verification and one-to-many identification scenarios.
○ (+) The publication uses real-life datasets from US governmental applications

(e.g. domestic mugshots, application photographs, visa photographs, border
crossing photographs), which helps in simulating realistic scenarios.

○ (-) The face recognition systems are tested as submitted by the developers
without being refined, adapted or trained in a unified environment; this does
not simulate the realistic scenario where the facial recognition system is
adapted to the local customer's data.

○ (-) The publication does not make any effort to explain the technical reasons
for the obtained results.

3.4. Publications Assessing the Impact of Deep
Model-related Influencing Factors

This subsection will review in more detail the publications listed in Table 4 addressing deep
model-related influencing factors; each publication will be identified by the associated
publication.

A. G.-S. J. Hsu, H.-Y. Wu, and M. H. Yap, “A Comprehensive Study on Loss
Functions for Cross-Factor Face Recognition,” IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, June
2020 [181].

● Influencing Factor(s): Loss function, pose variation, age, occlusion, image
resolution.

● Objectives: To evaluate the state-of-the-art loss functions considered in deep face
recognition under four influencing factors, namely pose variation, age, occlusion and
image resolution in order to clarify the impact of these factors on loss functions.

● Methodology Description: The methodology consists in evaluating and comparing
the performance for five loss functions, e.g. Centre Loss, Marginal Loss, Angular
Softmax Loss, Large Margin Cosine Loss, and Additive Angular Margin Loss using
the same CNN architecture (ResNet-100) via the following process:

○ In the training stage, the ResNet-100 is trained on the MS-Celeb-1M dataset
to learn facial features under the supervision of different loss functions.

○ In the test stage, the learned facial features are extracted and compared
using the cosine similarity score metric in a verification scenario. In addition,
the tests are performed on five different datasets considering the influencing
factors:
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- IARPA Janus Benchmark–B (IJB-B) and IARPA Janus Benchmark–C
(IJB-C) are used for pose variation.

- FG-Net Ageing Database (FG-Net) is used for age.
- AR Face Database (AR Face) is used for occlusion.
- Surveillance Cameras Face Database (SCface) is used for image

resolution.
● Modelling the Impact of Influencing Factors: In the following, some of the

experimental results of the publication are presented.
○ Pose variation

Table 10 and Table 11 illustrate the verification rate in terms of true accept rate
(TAR) on the IJB-B and IJB-C datasets, respectively. It may be observed that
ArcFace with the Additive Angular Margin loss outperforms the remaining loss
functions on both datasets, showing its ability to support facial pose variations.
Arcface performance is followed by CosFace with the Large Margin Cosine loss,
then SphereFace with the Angular Softmax loss, then Marginal loss and finally
Center loss.

Table 10: Verification rate (in % TAR) for state-of-the-art loss functions tested on the IJB-B
dataset.

Model TAR (%) @FAR AUC (%)

0.01% 0.001% 0.0001%

Centre Loss 88.9 80.2 68.3 98.7

Marginal Loss 90.1 82.5 72.6 98.9

SphereFace 94.3 91.4 81.3 99.6

CosFace 95.9 92.6 89.1 99.4

ArcFace 97.4 94.9 92.6 (94.2) 99.5

Table 11: Verification rate (in % TAR) for state-of-the-art loss functions tested on the IJB-C
dataset.

Model TAR (%) @FAR AUC (%)

0.01% 0.001% 0.0001%

Centre Loss 90.4 83.5 74.1 98.9

Marginal Loss 92.6 87.4 79.9 99.1

SphereFace 96.8 91.7 86.1 99.6

CosFace 96.8 93.3 90.2 99.5
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ArcFace 97.9 96.1 93.6 (95.6) 99.6

○ Age variation

Table 12 shows the cross-age performance on the FG-Net dataset. It may be
observed that ArcFace outperforms the remaining loss functions followed by
SphereFace, and then CosFace. Additionally, it is found that the cross-age
performance is the lowest among the four influencing factors with a clear gap,
which may open new future research directions in this field.

Table 12: Verification rate (in % TAR) for state-of-the-art loss functions tested on the FG-Net
dataset.

Model TAR (%) @FAR AUC (%)

0.1% 0.01% 0.001%

SphereFace 86.1 65.6 43.6 95.1

CosFace 84.1 56.6 33.7 94.2

ArcFace 89.7 71.3 52.3 96.3

● Strengths and Weaknesses:
○ (+) The publication evaluates the loss functions under different influencing

factors, which provides information on how to better use the available loss
functions and better conceive new ones.

○ (+) The loss functions are evaluated in a unified environment (e.g. network
architecture settings, training/testing datasets, etc.) to report valid and
conclusive assessments.

○ (-) The publication evaluates the loss functions only under four influencing
factors, e.g. pose variation, age, occlusion, image resolution, without
considering other important factors such as gender and race.

B. J. Coe and M. Atay, “Evaluating Impact of Race in Facial Recognition across
Machine Learning and Deep Learning Algorithms,” Computers, vol. 10, no. 9,
pp. 1-24, September 2021 [183].

● Influencing Factor(s): Race.
● Objectives: To explore the influence of racial differences on face recognition by

pursuing the following strategy:
○ Assess the racial bias across five ML and three DL-based algorithms.
○ Use racially balanced and unbalanced datasets.
○ Analyse the experimental findings and compare the performance, miss rate,

and accuracies of the tested systems.
○ Report the systems that most minimise the racial bias.
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● Methodology Description: The methodology consists in performing two evaluation
steps, notably evaluation plan and evaluation procedure:

○ Evaluation Plan: Presents the procedure pursued to give an in-depth
evaluation by using:

- Multiple ML and DL systems.
- Three generated sub-datasets sourced from the FERET dataset that

emphasise various races.
- With 24 subjects, 12 facial images per subject, the sub-datasets are

weighted as illustrated in Table 13.

Table 13: FERET dataset splits.

Balanced Dominant Set 1 Dominant Set 2

Black subjects 12 16 8

White subjects 12 8 16

Since each subject has only 12 samples, three sorts of experiments are performed:

- Experiment 1: Takes 11 images for training and 1 image for testing (original
split).

- Experiment 2: Takes 8 images for training and 1 image for testing (after
removing 3 images to eliminate the impact of occlusion, illumination and
expression).

- Experiment 3: Takes 22 images for training and 1 image for testing (after
applying data augmentation on the initial 11 images).

- Evaluation Procedure: Regards the global process pursued to evaluate the
performance of the tested systems. The process is performed as follows:

- Select the system.
- Select the dataset.
- Measure the metrics.
- Repeat steps 2 and 3 for each dataset with the selected system.
- Repeat the entire process for each system.

● Modelling the Impact of Influencing Factors: In the following, some of the
experimental results from the publication are presented.

○ Racial bias across ML algorithms on balanced dataset

Figure 23 illustrates the recognition accuracy of five ML-based face recognition
systems on the balanced dataset using experiment 1. It is clear that the support
vector classifier (SVC) outperforms the remaining ML-based algorithms.
However, the accuracy barely surpassed 80%, which is well below the industry
standard and user expectations. Another remarkable finding is the other
algorithms` low level performance, particularly the k-nearest neighbours (KNN)
algorithm that barely surpasses the 50% performance.
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Figure 23: ML recognition accuracies with balanced dataset and 8 training images.

○ Racial bias across ML algorithms on imbalanced dataset

The same experiment is performed using the two imbalanced datasets (Dominant
Set 1 and Dominant Set 2). The results obtained for Dominant Set 1 (see Figure
24(black)) show similar results to Figure 23 compared to Dominant Set 2 (see
Figure 24 (white)) that yields slightly better performance when the KNN algorithm
is applied, demonstrating the importance of the dataset.

Figure 24: ML accuracies with imbalanced datasets and 8 training images.

● Strengths and Weaknesses:
○ (+) The publication evaluates multiple DL and ML face recognition systems.
○ (+) The publication uses various performance metrics such as accuracy, miss

rates, precision, recall, and F1.
○ (-) The publication uses only the FERET dataset.
○ (-) The publication conducts the performance evaluation only for white and

black cohorts.
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3.5. Summary

In Section 3, a review of the state-of-the-art publications assessing the impact of the
influencing factors on AI-based face recognition systems is presented. First, a set of
publications exploring this research area is introduced. Then a subset of the more relevant
publications is identified and classified according to the influencing factors classes. Finally,
each of the identified publications is further described and analysed.

As shown in this section, a significant number of publications has already been developed to
assess the impact of the influencing factors on facial recognition. However, more attention is
given to some influencing factors (e.g. gender, race, age, occlusion, etc.) than others (e.g.
image compression, plastic surgery, facial make-up, etc.) that are of fundamental importance
and deserve more investigation. Therefore, providing a sufficient and equal level of
importance to all the influencing factors might answer some open questions regarding the
decision-making process of AI-based face recognition technology.

4. Conclusion
Over recent years, the attempts to understand and explain the facial recognition pipelines
behaviour has had significant attention and progress, especially the black box face
recognition pipelines based on AI tools. Identifying the reasons responsible for the AI-based
face recognition pipelines final decision is very useful for the builders of such pipelines to
explain the decision making, improve the pipelines' performance, and ensure their fairness.

Recent AI-based face recognition explainability publications aim to explore the influencing
factors and express their effect on the overall performance of AI-based face recognition
pipelines. This is particularly relevant for DL-based face recognition systems, which differ
from shallow AI algorithms such as decision trees and linear regression that are
self-explanatory as the decision boundary used for the recognition can be visualised via the
model parameters.

In this context, this report offers a comprehensive overview of the influencing factors
impacting the facial recognition process. First, a list of the various influencing factors is
identified. More precisely, a novel taxonomy of these influencing factors is introduced,
namely, (1) data quality-related factors, (2) human-related factors, and (3) deep
model-related factors. Then, a survey of the state-of-the-art publications assessing the
impact of the influencing factors on deep face recognition systems is presented. In addition,
a subset of the more relevant publications is identified and further analysed.

The survey of the literature publications pointed out a considerable number of challenging
influencing factors. The analysis of these publications has shown that despite the number of
publications proposed to assess the effect of the influencing factors on deep face
recognition, the investigation does not cover well enough all the influencing factors. Most of
the publications have predominantly focused on the influence of some specific factors
considered as challenging variations such as age, race, illumination and facial expression.
Other influencing factors (e.g. image compression, plastic surgery, facial make-up etc.) are
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less investigated or have not yet been studied. Therefore, more effort needs to be dedicated
to evaluate the recognition performance of deep face recognition pipelines under such
influencing factors.

To sum up, AI-based face recognition explainability is a wide and yet rather unexplored
research area. Therefore, there is still a need to make the explainability mechanisms and
models more holistic by assessing the impact of a wide range of influencing factors, which
opens new directions for future works. Among the influencing factors that deserve to be
assessed, image compression looks rather important since more and more the faces to be
recognized are decoded after compression. In fact, compression is typically applied to
efficiently transfer the acquired facial images to a distant device for identification or
verification. In addition, compression is commonly used to store facial images in limited
capacity devices such as smart cards and mobile applications’ databases. However, using
decompressed facial images for face recognition might lead to recognition performance
degradation, depending on the compression level. Thus, studying and analysing the
influence of image compression on AI-based face recognition systems seems like an
inevitable line of research, especially considering the more recent image compression
solutions. e.g. the JPEG XL standard and the emerging JPEG AI solutions.
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