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Measuring and Improving Explainability for AI-based Face Recognition

Executive Summary
This deliverable reports the progress of the second task of the second work package in the
XAIface project (T2.2). It focuses on the methodology for efficient performance assessment,
the design of efficient metrics and protocols, and the overall benchmarking process for face
recognition systems.

This document summarizes the activities as follows. A new methodology of performance
assessment is firstly proposed. It measures the impact of different types of influencing
factors, which is in line with the content in T2.1, on the performance of deep face recognition
systems. Then, a benchmarking process is defined to evaluate a face recognition system
under two face recognition tasks. Four key elements of a benchmarking process are
explained in detail, including two state-of-the-art reference deep face recognition pipelines,
multiple face recognition databases, experimental protocols for the two face recognition
tasks, and the performance metrics used to report the results. In the end, the benchmarking
process is summarized with examples of key instantiations for each dimension.
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Abbreviations

ACC Accuracy
AgeDB Age Database
ArcFace Additive Angular Margin Loss
AUC Area Under the Curve
AWGN Additive White Gaussian Noise
CALFW Cross-Age Labeled Faces in the Wild
CASIA Chinese Academy of Sciences’ Institute of Automation
CFP-FP Frontal to Profile Face Verification in the Wild
CMC Cumulative Match Characteristic
CosFace Cosine Face
CPLFW Cross-Pose Labeled Faces in the Wild
DCN Deformation Convolutional Network
DCNNs Deep Convolutional Neural Networks
DiveFace Dataset for Diversity-Aware Face Recognition
DL-Comp Deep Learning-based Compression
FAR False Accept Rate
FDDB Face Detection Data Set and Benchmark
FERET Face Recognition Technology
FN False Negative
FNR False Negative Rate
FP False Positive
FPR False Positive Rate
FPR False Positive rate
FPIR False Positive Identification Rate
FR Face Recognition
GB Gaussian Blur
GN Gaussian Noise
IJB IARPA Janus Benchmark
JPEG Joint Photographic Experts Group
LFW Labeled Faces in the Wild
LR Low Resolution
MagFace Magnitude Face
MTCNN Multi-task Cascaded Convolutional Networks
Po-Gau-N Poissonian-Gaussian Noise
ResNet Residual Neural Network
ROC Receiver Operating Characteristic
SphereFace Hypersphere Face
TAR True Accept Rate
TN True Negative
TP True Positive
TPIR True Positive Identification Rate
TPR True Positive Rate
YTF YouTube Faces
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1. Introduction
Face recognition has become a prominent biometric technology in our society, widely used
in multiple areas, such as access control, video surveillance, automatic annotation etc. With
the development of deep convolutional neural networks (DCNNs), some deep
learning-based face recognition methods (Chen et al. 2018) (Deng et al. 2019) (Wang et al.
2020) (Sun et al. 2020) (Meng et al. 2021) trained with large-scale face datasets have
demonstrated nearly perfect results on popular public face recognition benchmarks.
Although the advanced network architecture and discriminative learning approaches
successfully boosted the performance, it is critical to fully understand and explain the
decisions made by the technology. The objective of the XAIface project is to increase the
level of trust of face recognition technology by identifying the influencing factors and better
revealing the underlying mechanisms of the current face recognition system.

To accomplish this objective, one of the most important tasks is to identify and to understand
the impact and role of different influencing factors in an end-to-end learning-based face
recognition system. Deliverable D2.1 has investigated a comprehensive list of possible
influencing factors. The goal of this deliverable – D2.2  "Implementation of Evaluation
Metrics and Protocols" – is to design suitable metrics and evaluation protocols in order to
explicitly and precisely measure the impact of influencing factors in an end-to-end
learning-based face recognition system. This report presents the current progress of the
design and the implementation of evaluation metrics and protocols.

To systematically measure the impact and the strength of either each influencing factor or
the combination of different factors, a new methodology of performance evaluation has been
firstly proposed and implemented. Afterward, a comprehensive benchmarking process is
developed to give comparative performance assessment for face recognition systems facing
different influencing factors.

In this deliverable, the document is structured as follows. Section 1 introduces the general
motivation and the objective for the XAIface project and this document.  Section 2 presents a
novel assessment framework designed for general recognition and detection tasks .The
presented framework can quantitatively and comprehensively measure the impact of given
influencing factors on the performance of a face recognition system. Then, a benchmarking
process is defined to evaluate the impact of given influencing factors in a more rigorous
manner. Four key elements of the process will be introduced in the following four sections.
Section 3 will introduce the chosen reference face recognition pipeline throughout the
XAIface project, i.e., ArcFace (Deng et al. 2019) and MagFace (Meng et al. 2021). Moreover,
their advanced performance on multiple public face recognition benchmarks are reported
and will serve as a reference baseline for future comparison. Face recognition database is
critical for defining the overall face recognition performance. Therefore, Section 4 presents a
criteria for dataset selection along with a brief description of the datasets to be used in the
project. Section 5 mainly shows the experimental protocol, which often refers to the type of
recognition task to be performed with a specific database. The fourth key element is the
performance metric, which is described in Section 6. This section summarizes the commonly
used performance metrics for face recognition systems and categorizes the metrics

Deliverable D2.2 5



Measuring and Improving Explainability for AI-based Face Recognition

according to the two application scenarios, i.e., verification and identification. Finally,
Section 7 summarizes the benchmarking process and the usage of the above four
elements.7.
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2. Evaluation Framework
Several studies have investigated the vulnerability of CNN-based models to real-world and
common image corruptions. (Dodge and Karam 2016) first measured the performance of
image classification models on data that suffered from noise, contrast variation and image
blur. (Hendrycks and Dietterich 2019) proposed a benchmark to evaluate the robustness of
image recognition models towards common corruptions. Extensive work (Michaelis et al.
2019) (Kamann and Rother 2020) has been carried out in object detection and semantic
segmentation and applied to safety-critical applications. Current activities in this area mostly
study impacts of corruptions during data acquisition and mainly apply to image classification
or object detection tasks. Similar analysis in the face recognition community has been
reported by (Karahan et al. 2016) (Mehdipour Ghazi and Kemal Ekenel 2016) (Grm et al.
2018), which investigated the robustness of CNN-based FR models. They focused on the
impact of face variations caused by standard image processing operation, illumination,
occlusion, and misalignment. An assessment framework is proposed to offer a more general
solution with a particular focus on face recognition.Additionally, it considers the impact of a
wider range of realistic image processing operations in the end-to-end workflow.

In this section, a rigorous and comprehensive assessment framework for face recognition
tasks is described, which assesses the impact of various influencing factors. This framework
will serve as a broad benchmarking approach for different recognition systems and a wide
range of prospective influencing factors. Figure. 2.1 illustrates the architecture of the
proposed assessment framework.

Figure. 2.1: Overview of the assessment framework for face recognition task

In the context of face recognition, the assessment framework performs the following steps to
measure the impact of different influencing factors at the same time. The test dataset is
firstly splitted to two groups, namely gallery faces and probe faces. Secondly, numerous
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potential factors are applied to the input data independently. The face recognition system
then extracts the deep features from the gallery faces and the distorted probe faces. The
cosine similarity between the features are computed following a certain evaluation protocol.
In the end, a task-oriented evaluation metric is adopted to measure the impact of each factor
in a quantitative manner.

In line with the work in Deliverable 2.1, the proposed assessment framework now supports a
wide range of influencing factors from both extrinsic environment and intrinsic processing
operations. Figure. 2.2 depicts the motivation of the framework where a typical data
acquisition and transmission pipeline in real world situations is demonstrated. Before being
used for face recognition tasks, face image data often suffers from natural distortions during
acquisition, such as noise, varying illumination, and low-resolution, followed by a set of
pre-/post- processing operations, such as compression, denoising, and resizing. The
assessment framework aims at analyzing the possible impact from any of the listed
influencing factors as well as the combinations between them.

Figure. 2.2: Influencing factors in realistic situations.

The details of all operations used in evaluations are described below with the illustration of a
typical example in Figure. 2.3. In general, the framework supports six categories of
processing operations or corruption with more than ten minor types. Each type consists of
different severity levels.

Compression: Lossy compression refers to the class of data encoding methods that remove
unnecessary or less important information and only uses partial data to represent the
content. These techniques are used to reduce data size for efficient storage and
transmission content and are widely applied to image and video processing. JPEG
compression is currently one of the most widely used compression algorithms for images
and therefore, it is included in the proposed framework with multiple compression factors. As
deep learning-based compression techniques are becoming increasingly popular, the
technique developed by (Balle et al. 2018) is also included in this framework.

Smoothing: Image blurring – also known as smoothing – is a widely employed operation to
reduce noise which simultaneously results in a reduction of details. Three frequently used
filters with various kernel sizes are considered in our framework, including Gaussian,
Median, and Average filters.

Noise: The acquisition of images can be easily affected by noise. This framework applies
Additive White Gaussian noise (AWGN) with multiple levels of variance. To better reflect the
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realistic situations, a synthetic Poissonian-Gaussian noise is also considered, the
parameters of which are learned from real-world noisy images.

Enhancement: Image enhancement is generally a very frequently used technique of
adjusting images for better display or further image analysis. The contrast and brightness of
images are modified by separately applying linear adjustment and Gamma correction.

Resolution: Low-resolution data can significantly reduce the performance of modern deep
learning-based detectors (Marciniak et al. 2013) (Li et al. 2012). This is often the case when
the face recognition system is employed in an outdoor environment, where captured data
could have limited resolution. In this framework, the low-resolution effect is synthesized by
downsampling face images with bicubic interpolation

Combinations: It is even more common that the captured face data suffers from multiple
distortion and processing operations in a short time. A mixture of two or three operations
above is also considered, such as combining JPEG compression and Gaussian noise,
making the test data better reflect more complex real-world scenarios.

Figure. 2.3: Example of a typical face image picked from a common dataset (Rossler et al.
2019) after applying various distortions and operations. Some notations are explained as
follows. DL-Comp: learning-based compression. GB: Gaussian blur. GN: Gaussian noise.
Po-Gau-N: Poissonian Gaussian noise. Gamma: Gamma correction. +: mixture.
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To use this assessment framework, The face recognition system should be trained on
standard face datasets, such as MS1M (Guo et al. 2016) and CASIA-WebFace (Yi et al.
2014), which will be introduced in detail in Section 4. The processing and corruption
operations are not applied on training data, but only the probe faces in test data.
Furthermore, a number of different parameters for these operations aree adopted to better
reflect their impact on face recognition systems.

Current face recognition systems are designed to be as high performing as possible on
specific benchmarks. But this often results in sacrificing generalization ability to more
realistic situations. The proposed assessment framework is capable of assessing the impact
of different influencing factors that often appear in realistic conditions and meanwhile
provides valuable insights on designing more robust techniques.
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3. Reference Face Recognition Solutions
In general, a face recognition pipeline is built on three main solutions (tools), notably face
detection, face alignment, and face recognition (a classifier). The face detection locates the
faces in the image or the video frame, and then the face alignment module calibrates the
faces and crops them into a predefined size. Finally, the face recognition module extracts
discriminative features from the preprocessed faces and performs the recognition task. Face
alignment module generally utilizes detected facial landmarks and performs spatial
transformation techniques to calibrate faces to a normalized layout, which can be embedded
to face detection pipeline. This section will introduce the face recognition solutions adopted
by the XAIface project, notably RetinaFace for face detection and ArcFace and MagFace for
face recognition.

The overall workflow of the reference face recognition pipeline is illustrated as Figure. 3.1.
As depicted in the figure, face images are first fed into RetinaFace face detection solution
where it gets bounding boxes and facial landmarks to perform preprocessing, such as
cropping and face alignment. The processed face images are then fed into the Arcface face
recognition system to further extract deep features for further evaluation. The extracted deep
features are used to calculate similarities among the face images according to the adopted
evaluation protocols to perform different face recognition tasks.

Figure 3.1: Overview of the face recognition pipeline

3.1. Reference Solution 1: RetinaFace for Face Detection
RetinaFace (Deng et al. 2020) is a robust single-stage face detector, which performs
pixel-wise face localization on various scales of faces by taking advantage of joint
extra-supervised and self-supervised multi-task learning. RetinaFace not only outperforms
the state-of-the-art face detection algorithms on the WiderFace (Yang et al. 2016) “Hard” test
set, but also proves to help improve the performance of face recognition algorithms. An
additional advantage of RetinaFace is that it simultaneously detects faces and five facial
landmarks.
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Figure 3.2: Architecture of RetinaFace face detection solution

In detail, RetinaFace adopts a single-shot multi-level face localization approach. The model
consists of three main components, including feature pyramid network, context head
module, and cascade multi-task loss. The feature pyramid network takes the input image
and outputs multiple feature maps at 5 different scales. 4 out of the 5 feature maps are
computed from the output of the corresponding pretrained ResNet using top-down and
lateral connections, while the last feature map is calculated through a 3x3 convolution, the
parameter of which is randomly initialized with the Xavier method (Xavier and Bengio 2010).
To strengthen the non-rigid context modeling capacity and increase the receptive field, the
deformation convolutional network (DCN) is used to replace all the 3x3 convolution layers in
this architecture. Moreover, cascade regression along with multi-task loss are used to
improve face localization. The RetinaFace adopts multi-task learning and aims at minimizing
the following loss function:
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The loss function is composed of the following 4 parts:
● Face classification loss : It is a softmax loss for binary classes to determine if𝐿

𝑐𝑙𝑠

there is a face not not.

● Face bounding box regression loss : and represents the coordinates of𝐿
𝑏𝑜𝑥

𝑡
𝑖

𝑡
𝑖
*

the predicted bounding box and the ground-truth box associated with the positive
anchor. The box regression targets is normalized following the strategy in (Girshick
2015)

● Facial landmark regression loss : and represents the predicted five facial𝐿
𝑝𝑡𝑠

𝑙
𝑖

𝑙
𝑖
*

landmarks and ground-truth. Similar to the bounding box, the landmark regression
also employs the target normalization.

● Dense regression loss of : It compares the pixel-wise difference of the 3D𝐿
𝑝𝑖𝑥𝑒𝑙

rendered face and the original 2D face

According to the published paper, RetinaFace with ResNet (He et al. 2016) as backbone,
achieves a performance of 91.4% average precision on the WiderFace (Hard) test set and
was able to run at 13 frames per second images of resolution 640x480. In addition,
RetinaFace helps boost the performance of a face recognition system by providing more
accurate face bounding boxes and landmarks. After replacing the MTCNN (Kaipeng et al.
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2016) face detection algorithm by RetinaFace, the verification accuracy of ArcFace on
CFP-FP (Sengupta et al. 2016) dataset has improved from 98.37% to 99.49%.

3.2. Reference Solution 2: ArcFace for Face Recognition
For the classification task of the adopted XAIface face recognition pipeline, we propose to
use the ArcFace solution, which is published in Computer Vision and Pattern Recognition
Conference (CVPR) (2019), entitled “ArcFace: Additive Angular Margin Loss for Deep Face
Recognition”. This face recognition algorithm uses ResNet as a backbone architecture and
proposes a novel Additive Angular Margin Loss to obtain highly discriminative features for
face recognition.

The ResNet model is one of the most famous deep neural networks used as backbone in
multiple computer vision tasks. The fundamental breakthrough of this deep neural network is
to simultaneously train extremely deep neural networks and deal with the vanishing gradient
issue. The ResNet resolves the vanishing gradient problem using the shortcut connections
technique which essentially skips the training of one or more layers, creating residual
blocks. These residual blocks design the path for the gradient to follow back to the earlier
layers. The ResNet model to be adopted by XAIface in the context of ArcFace may be
ResNet50 or ResNet100, depending on the relative importance given to recognition
performance and complexity in a context where explainability is the key target.

The ArcFace face recognition pipeline adopts a novel Additive Angular Margin Loss function,
which is improved from the classical Softmax loss. Despite that the Softmax loss is one of
the most widely used classification loss function, it does not explicitly optimize the feature
embedding to enforce higher similarity for intra-class samples and diversity for inter-class
samples, which generates a recognition performance gap in large intra-class face
appearance variation (e. g. facial expressions, pose variation, age gap) and large-scale test
datasets.

The following equation illustrates the Softmax loss function:

𝐿
1

=− 1
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Where:

: The facial feature of the sample belonging to the class𝑥
𝑖

𝑖𝑡ℎ 𝑦
𝑖
𝑡ℎ

: The column of the weight matrix𝑊
𝑗

𝑗𝑡ℎ 𝑊

: The bias term𝑏
𝑗

𝑗𝑡ℎ 

: The batch size𝑁
: The class number𝑛

To generate the ArcFace loss from the Softmax loss, the following steps are pursed:
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1. Fix the bias to zero.𝑏
𝑗

2. Transform the logit as where is the angle between the weight and the feature .θ
𝑗
 𝑊

𝑗
𝑥
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3. Normalize the weights and features to make the predictions only depend on the
angle between them, i.e fix the individual weight by L2 normalization and𝑊

𝑗| || | = 1

fix the embedding feature by L2 normalization and rescale to .𝑥
𝑖| || | 𝑠

4. Add an additive angular margin penalty between and to enhance the𝑚 𝑥
𝑖

𝑊
𝑦𝑖

 

intra-class compactness and inter-class discrepancy.

The following equation presents the ArcFace loss function:
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The suggested ArcFace loss outperforms the Softmax loss by re-centering the distributed
facial features around each feature center on the hypersphere (see Figure 3.2), and
enforcing a more evident gap between classes.

Figure. 3.2: Example of the softmax and ArcFace loss on 8 identities with 2D features. All
the face features are pushed to the arc space with a fixed radius. The geodesic distance
between the two classes is more evident after applying the additive angular margin.

The ArcFace loss function has a clear geometric interpretation due to the exact
correspondence to the geodesic distance on the hypersphere. The authors present an
extensive experimental evaluation over all recent state-of-the-art face recognition methods
and demonstrate excellent results on various face verification and identification benchmarks
with multiple evaluation metrics.

According to data from the published paper, the ArcFace face recognition solution reports
high verification performance on two most widely used face recognition benchmarks, i.e.
Labeled Faces in the Wild (LFW) (Huang et al. 2007) and YouTube Faces (YTF) (Wolf et al.
2011). As shown in the following table, ArcFace trained on MS1MV2 dataset with ResNet100
backbone beats all other methods in the leaderboard.

Table 3.1: Verification performance (%) of different face recognition solutionson LFW and
YTF datasets
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Solutions LFW YTF

DeepID1 99.47 93.20

DeepFace2 97.35 91.40

VGGFace3 98.95 97.30

FaceNet4 99.63 95.10

Baidu5 99.13 -

Center Loss6 99.28 94.90

Range Loss7 99.52 93.70

Marginal Loss8 99.48 95.98

SphereFace9 99.42 95.00

SphereFace+10 99.47 -

CosFace11 99.73 97.60

MS1MV2, R100, ArcFace 99.83 98.02

The ArcFace solution is also compared with previous state-of-the-art face recognition
solutions in terms of TAR (@FAR=1e-4) on IJB-B and IJB-C datasets. The following table
shows that ArcFace can obviously boost the performance by at least 5%.

11 H. Wang, Y. Wang, Z. Zhou, X. Ji, Z. Li, D. Gong, J. Zhou, and W. Liu. Cosface: Large margin
cosine loss for deep face recognition. In CVPR, 2018.

10 W. Liu, R. Lin, Z. Liu, L. Liu, Z. Yu, B. Dai, and L. Song. Learning towards minimum hyperspherical
energy. In NIPS, 2018.

9 W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. Sphereface: Deep hypersphere embedding for
face recognition. In CVPR, 2017

8 J. Deng, Y. Zhou, and S. Zafeiriou. Marginal loss for deep face recognition. In CVPR Workshop,
2017.

7 X. Zhang, Z. Fang, Y. Wen, Z. Li, and Y. Qiao. Range loss for deep face recognition with long-tail. In
ICCV, 2017.

6 Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning approach for deep face
recognition. In ECCV, 2016.

5 J. Liu, Y. Deng, T. Bai, Z. Wei, and C. Huang. Targeting ultimate accuracy: Face recognition via deep
embedding. arXiv:1506.07310, 2015.

4 F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and
clustering. In CVPR, 2015

3 O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In BMVC, 2015.

2 Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level
performance in face verification. In CVPR, 2014

1Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face representation by joint
identification-verification. In NIPS, 2014.
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Table 3.2: 1:1 verification TAR (@FAR=1e-4) (%) on the IJB-B and IJB-C dataset

Method IJB-B IJB-C

ResNet5012 78.4 82.5

SENet50 80.0 84.0

ResNet50+SENet50 80.0 84.1

MN-v13 81.8 85.2

MN-vc 83.1 86.2

ResNet50+DCN(Kpts)14 85.0 86.7

ResNet50+DCN(Divs) 84.1 88.0

SENet50+DCN(Kpts) 84.6 87.4

SENet50+DCN(Divs) 84.9 88.5

VGG2, R50, ArcFace 89.8 92.1

MS1MV2, R100, ArcFace 94.2 95.6

The evaluation of ArcFace is also performed on both verification and identification scenarios
using the MegaFace dataset. This dataset includes two protocols for large and small training
sets. To perform a fair comparison, the ArcFace is trained on CAISA (resp. MS1MV2) using
ResNet50 (resp. ResNet100) under small and large protocols respectively. It is evident from
Table 3.3 that Arcface outperforms the other state-of-the-art face recognition solutions for
both small and large protocols. In addition, as illustrated in Figure 3.3, ArcFace showed
superiority over CosFace and forms an upper envelope of CosFace under both identification
and verification scenarios. Moreover, it showed a higher verification and identification
accuracy after refining the whole MegaFace dataset from the wrong labels.

Table 3.3: Face identification and verification evaluation of different face recognition
solutions on MegaFace  Challenge1 using FaceScrub as the probe set. “Id” refers to the
rank-1 face identification  accuracy with 1M distractors, and “Ver” refers to the face
verification false reject rate (TAR) at 10-6 false accept rate (FAR). “R” refers to data
refinement on both probe set and 1M  distractors.

14 W. Xie, S. Li, and A. Zisserman. Comparator networks. In ECCV, 2018.
13 W. Xie and A. Zisserman. Multicolumn networks for face recognition. In BMVC, 2018

12 Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2: A dataset for recognising faces
across pose and age. In FG, 2018
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Methods Id (%) Ver (%)

Softmax
Contrastive Loss

Triplet
Center Loss
SphereFace

CosFace
AM-Softmax
SphereFace+

54.85
65.21
64.79
65.49
72.73
77.11
72.47
73.03

65.92
78.86
78.32
80.14
85.56
89.88
84.44

-

CASIA, R50, ArcFace
CASIA, R50, ArcFace, R

77.50
91.75

92.34
93.69

FaceNet
CosFace

70.49
82.72

86.47
96.65

MS1MV2, R100, ArcFace
MS1MV2, R100, CosFace

MS1MV2, R100, ArcFace, R
MS1MV2, R100, CosFace, R

81.03
80.56
98.35
97.91

96.98
96.56
98.48
97.91

Figure 3.3: Cumulative match curve (CMC) and receiver operating characteristic curve
(ROC) of different models on MegaFace. Results are evaluated on both original and refined
MegaFace dataset (Aaron and Ira 2017).

3.3. Reference Solution 3: MagFace for Face Recognition
The second face recognition pipeline adopted by the XAIface project is MagFace (Meng et
al. 2021). It is published in Computer Vision and Pattern Recognition Conference (CVPR)
(2021), entitled "MagFace: A Universal Representation for Face Recognition and Quality
Assessment". Beyond the previous face recognition solutions, MagFace focuses on the
problem that the performance of face recognition systems degrades when facing
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various-quality face images. To alleviate this issue, Meng et al proposed a novel loss
function named MagFace, which guides the neural network to learn a more universal feature
embedding to adaptively measure the quality of the given face images using the magnitude
information. Meanwhile, an adaptive mechanism, which pulls easy samples to class centers
while pushing hard samples away is introduced to learn well structured inner-class feature
distributions. The MagFace demonstrates a state-of-the-art performance on different face
recognition benchmarks, in particular improving the face recognition accuracy in the wild.

Prior work (Deng et al. 2019) often optimizes the model based on a cosine-similarity face
recognition loss beyond a fixed margin , which results in unstable inner-class structure in𝑚
an unconstrained environment. The natural intuition of MagFace is that high-quality image
samples should concentrate in a small region around the cluster with a high certainty𝑥

𝑖
 𝑤

level. By assuming the positive correlation between the image quality and feature
magnitude, MagFace additionally proposes a new framework to encode quality factor by
optimizing over the magnitude of each feature vector and meanwhile keeps the𝑎

𝑖
= ||𝑓

𝑖
|| 𝑓

𝑖

cosine-based loss function. Moreover, the magnitude-aware angular margin is𝑚(𝑎
𝑖
)

proposed and will be penalized during training when magnitude is very large. On the𝑎
𝑖

contrary to constraint the freedom of high-quality samples and stably push them to class
center, a monotonically decreasing convex function with respect to feature magnitude𝑔(𝑎

𝑖
) 

is designed and works as a regularization.𝑎
𝑖

To sum up, the MagFace extends ArcFace by introducing a magnitude-aware margin and
regularizer to enforce higher diversity for inter-class samples and more similarity for
intra-class samples. It optimizes the following loss function:
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The first term in the loss function is similar to the ArcFace loss, except that the fixed angular
margin is replaced by a magnitude-aware angular margin . The hyperparameter is𝑚 𝑚(𝑎

𝑖
) λ

𝑔

a trade-off between the classification and regularization.

The MagFace shows an outstanding performance on both easy and difficult face recognition
benchmarks.

Table 3.4: Verification accuracy (%) on relatively easy benchmarks

Method LFW CFP-FP AgeDB-30 CALFW CPLFW

Softmax 99.70 98.20 97.72 95.65 92.02

SV-AM-Soft 99.50 95.10 95.68 94.38 89.48
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max

ShpereFace 99.67 96.84 97.05 95.58 91.27

CosFace 99.78 98.26 98.17 96.18 92.18

ArcFace 99.81 98.40 98.05 95.96 92.72

MagFace 99.83 98.46 98.17 96.15 92.87

Table 3.5: Verification accuracy (%) on relatively difficult benchmarks. “*” indicates the
results quoted from the original paper.

Method IJB-B(TAR@FAR) IJB-C(TAR@FAR)

1e-6 1e-5 1e-4 1e-6 1e-5 1e-4

VGGFace2* - 67.10 80.00 - 74.70 84.00

CenterFace* - - - - 78.10 85.30

CircleLoss* - - - - 89.60 93.95

ArcFace* - - 94.20 - - 95.60

Softmax 46.73 75.17 90.06 64.07 83.69 92.40

SV-AM-Softmax 29.81 69.25 84.79 63.45 80.30 88.34

SphereFace 39.40 73.58 89.19 68.86 83.33 91.77

CosFace 40.41 89.25 94.01 87.96 92.68 95.56

ArcFace 38.68 88.50 94.09 85.65 92.69 95.74

MagFace 40.91 89.88 94.33 89.26 93.67 95.81

MagFace+ 43.32 90.36 94.51 90.24 94.08 95.97
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4. Datasets
In this section we report on the process that led to the selection of the databases to be used
in the project. In addition, a brief description of the databases is given below. However, for a
more detailed description of the databases, the reader is invited to read document D3.2
“Face image dataset”.

A number of databases were selected according to a list of criteria defined by the consortium
(see Table 4.1). The objective of the selected criteria is on the one hand to ensure that the
database has the necessary characteristics for the development of the techniques envisaged
in XAIface, and on the other hand to ensure the reproducibility of the experiments.

Table 4.1: List of criteria for database selection.

Criterion - type Criterion - definition Criterion - values

Abstract important features/information about the database text

Availability
In case the database is no longer available, are
there available models trained on that database? text

Database
composition # classes #

# samples per class #

Total # of samples #

Male / female % male: #%, female #%

Ethnicity % %, not provided

Age / Age groups % %, not provided

# of acquisition sessions #

Time span between acquisition sessions # days

PIE* variations yes / no (notes)

DB size # GB

test/train/val split? yes / no (notes)

Documentation and
baseline evaluation Documentation available and quality assessment yes (rating 1-5) / no

Used with ArcFace?
yes / no (notes, ref. to
article(s))

Used with MagFace?
yes / no (notes, ref. to
article(s))

Sample features Data type e.g. images, videos

Data format e.g. TIFF, JPG, PNG, AVI

Faces are aligned?
yes / no (alignment
method)

Deliverable D2.2 20



Measuring and Improving Explainability for AI-based Face Recognition

Faces are cropped? yes / no (cropping method)

Other processing? yes / no (notes)

Sample size #x# pixels

Acquisition Acquisition sensor

Acquisition modality
e.g. visible, thermal, NIR**,
etc.

Multimodal acquisition?
yes / no (list of acquisition
modalities and sensors)

Acquisition conditions
e.g. controlled,
uncontrolled

Annotation Annotation list of annotated features

Annotation method e.g. manual, automatic

GDPR GDPR compliance notes

Collection yes / no

Use yes / no

License Publicly available yes / no (notes)

Commercial usage and changes allowed? yes / no (notes)

About Link to DB url

Provider name of provider

Associated article reference

Use in XAIface Used for what task in XAIface? Task number (notes)

*Pose Illumination Expression, **Near InfraRed

4.1. Short Description of Datasets

4.1.1. AgeDB
The AgeDB (Moschoglou et al. 2017) dataset is used in age-invariant face verification in the
wild experiments since it is a manually collected database with a large range of ages for
each subject. This property makes AgeDB highly beneficial when training models for age
progression experiments. Every image is annotated with identity, age, and gender attributes.
AgeDB-30, which is a subset of AgeDB, has been used for validation with MagFace and
ArcFace, which are the selected FR pipelines in XAIface.

4.1.2. Labeled Faces in the Wild
Labeled Faces in the Wild (LFW) (Huang et al. 2007) is a public benchmark for face
verification. It is a database of face photographs designed for studying the problem of
unconstrained face recognition. The dataset contains more than 13,000 images of faces
collected from the web. Each face has been labeled with the name of the portrayed person.
The faces were detected by the Viola-Jones face detector (Viola and Jones 2001). LFW is
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often selected as a standard reference. However, for some identities only a small number of
samples is provided and contains a relatively small proportion of women (according to
authors). LFW is used for validation of ArcFace and MagFace.

4.1.3. Cross-Pose LFW
The Cross-Pose LFW (CPLFW) (Zheng and Deng 2018) is an improved version of the LFW
face dataset, where more pose variations of the same persons were added while keeping
the same identities as in the LFW dataset. The CPLFW dataset is used to achieve face
verification. The evaluation of multiple DL face recognition models on CPLFW showed that
the accuracy drops by about 15%-20% compared to LFW (see Table 2.2b).
CPLFW is used for validation of ArcFace and MagFace.

Figure 4.1: Pose variation comparison between LFW and CPLFW.

4.1.4. Cross-Age LFW
The Cross-Age LFW (CALFW) (Zheng et al. 2017) is an improved version of the LFW face
dataset, where more face pairs with age gaps were added to add age variation and
intra-class variance while keeping the same identities as in the LFW dataset. The CALFW
dataset is used to achieve face verification. The evaluation of multiple DL face recognition
models on CPLFW showed that the accuracy drops by about 10%-17% compared to LFW
(see Table 2.2b). CALFW is used for validation of ArcFace and MagFace.

Deliverable D2.2 22



Measuring and Improving Explainability for AI-based Face Recognition

Figure 4.2: Age gap comparison between LFW and CALFW.

Table 4.2: Comparison of verification accuracy (%) on LFW and CPLFW using ArcFace.

Method LFW CPLFW CALFW

ArcFace 99.82% 92.08% 95.87%

4.1.5. DiveFace
DiveFace (Morales et al. 2020) is a dataset designed for bias analysis. It is obtained by
extracting balanced sets of face images, according to gender and ethnicity, from the
MegaFace database. MegaFace contains images from Flickr. Apparently the MegaFace has
been recently decommissioned.

DiveFace contains annotations equally distributed among six classes related to gender and
ethnicity (male, female and three ethnic groups). Gender and ethnicity have been annotated
following a semi-automatic process. There are 24K identities (4K for class). The average
number of images per identity is 5.5 with a minimum number of 3 for a total number of
images greater than 150K. Although DiveFace is no longer available, it has been selected as
an example of a balanced dataset that might be useful to recreate for experiments in
XAIface.

4.1.6. The IARPA Janus Benchmark-C (IJB-C)
Despite the importance of rigorous testing data for evaluating face recognition algorithms, all
major publicly available faces-in-the-wild datasets are constrained by the use of a
commodity face detector, which limits, among other conditions, pose, occlusion, expression,
and illumination variations. In 2015, the NIST IJB-A dataset, which consists of 500 subjects,
was released to mitigate these constraints (Whitelam et al. 2017).

In 2017, IARPA Janus Benchmark-B (NIST IJB-B) database was released, a superset of
IJB-A. IJB-B consists of 1,845 subjects with human-labeled ground truth face bounding
boxes, eye/nose locations, and covariate metadata such as occlusion, facial hair, and skin
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tone for 21,798 still images and 55,026 frames from 7,011 videos. IJB-B was also designed
to have a more uniform geographic distribution of subjects across the globe than that of
IJB-A.

IJB-C (Maze et al. 2018), released in 2018, adds 1,661 new subjects to the 1,870 subjects
released in IJB-B, with increased emphasis on occlusion and diversity of subject occupation
and geographic origin with the goal of improving the representation of the global population.
Annotations on IJB-C imagery have been expanded to allow for further covariate analysis,
including a spatial occlusion grid to standardize the analysis of occlusion. Due to these
enhancements, the IJB-C dataset is significantly more challenging than other datasets in the
public domain and will advance the state of the art in unconstrained face recognition. IJB-C
has been used for evaluation of ArcFace and MagFace (Meng et al. 2021).

Note: It is well known that IJB-C shows gender- and skin tone-wise bias (Dhar et al. 2021).

Anyway, the authors took care to select a large variation of “geographic regions” and did not
use “celebrity-only” media. Amazon Mechanical Turk has been used to get good metadata
(occlusion, facial hair, gender, capture environment, skin tone, age, and face yaw) so that it
should be possible to mitigate and analyze bias-issues.

4.1.7. CASIA-WebFace
The CASIA-WebFace (Yi et al. 2014) is the second largest public dataset available for face
verification and recognition problems. This database is used for face verification and face
identification tasks and any individual or group is allowed to use this database for
educational or non-commercial use free of charge. The face images in the database are
crawled from the Internet, more specifically from IMDB by the Institute of Automation,
Chinese Academy of Sciences (CASIA). Image collection and identity annotation have been
performed following a semi-automatic process. The dataset contains 494,414 face images of
10,575 real identities. This database has been used for training MagFace and the trained
model is available online.

4.1.8. MS1MV2 (cleaned version of MS1M, provided by
InsightFace)

The MS1MV2 is a refined version of the MS-Celeb-1M (Guo et al. 2016). This large-scale
database is used for training face recognition systems and even though the official dataset is
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no longer available, trained models are public to all internet users. The original images
present in the database were collected from the Internet and the subjects collected were
selected according to their popularity on the web. MS1MV2 consists of 5.8M images of 85K
different identities. It has also been used to train MagFace and the trained model is publicly
available.

4.1.9. FairFace

Figure 4.3: Individual Typology Angle (ITA), i.e., skin color, distribution of different races
measured in our dataset.

FairFace (Kimmo and Jungseock 2019) is a dataset focused on race balance for bias
estimation. In order to mitigate the race bias, the authors emphasize a balanced race
composition in the dataset by defining 7 race groups: White, Black, Indian, East Asian,
Southeast Asian, Middle East, and Latino, and ensuring, as shown in Figure 4.3, equal
representation. The images were collected from the YFCC-100M Flickr dataset (Thomee et
al. 2016) and labeled with race, gender, and age groups thus making possible a bias
estimation for all 3 categories. FairFace contains 108,501 images not currently available and
just pretrained models on this dataset are still publicly available.

4.1.10. FairFaceRec

The FairFaceRec dataset is a superset of the IJB-C (Maze et al. 2018) dataset created for
the ChaLearn challenge. The participants of this challenge were asked to develop fair face
verification methods aiming for a reduced bias in terms of gender and skin color. The new
superset consists of 13k images from 3k new subjects along with a reannotated version of
IJB-C (140k images from 3.5k subjects), totaling ~153k facial images from ~6.1k unique
identities. The new database was annotated for gender and skin color as well as for age
group, eyeglasses, head pose, image source and face size. Although DiveFace is no longer
available, it has been selected as an example of a balanced dataset useful in future
experiments in XAIface.
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4.1.11. WIDERFace

Figure 4.4: Examples of annotation in WIDER FACE dataset (Best view in color).

WIDERFace (Yang et al. 2016) is a database designed for face detection purposes. It
contains rich annotations, including occlusions, poses, event categories, and face bounding
boxes and it is composed of 32,203 images, labeling 393,703 faces with a high degree of
variability in scale, pose and occlusion. The authors suggest a dataset division into training
(40%), validation (10%) and testing (50%) sets. Although the database is not publicly
available anymore, XAIface members have had access to it. Furthermore, several
pre-trained models can be found on the Internet.

4.1.12. VIP_attribute_extended (extended by EURECOM)

The VIP_attribute is a dataset composed of facial images, annotated for gender, body
height, weight and BMI which has been used to prove that facial images contain
discriminatory information pertaining to those traits. The database is publicly available under
request to the authors and consists of mainly frontal face images of celebrities (mainly
actors, singers and athletes) collected from the web. It contains one image of each of the
1026 subjects enrolled in it, specifically 513 female and 513 male celebrities. The
VIP_attribute_extended is an extension of the annotation of the VIP_attribute database
performed by EURECOM. The original database was extended by adding for every subject
annotations of their hairstyle, presence and type of facial hair and presence of glasses thus
making possible further studies of those categories (Dantcheva et al. 2018).
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5. Protocols
Protocols describe detailed reference implementations of the face-recognition methods
themselves, the datasets used, and performance measures applied to our face-recognition
pipelines in the project used, which ensures a project-wide and comparable consistency of
evaluation results obtained. It is critical to define and agree on an almost limited set of
reference protocols, as there exist a vast amount of evaluation protocols in literature and it is
simply not possible to evaluate against all of them to show at least comparable or improved
face-recognition performance when introducing novel developed explainability techniques
within the project.

Reference protocols and benchmark definitions for evaluation are usually heavily dependent
on related datasets and often published together in so-called “challenges”. This is especially
important because there is a clear tendency in increasing database-scale observed during
the past decades and a clearly defined selection of (randomized) subsets used e.g. for
training and testing is needed to (comparable) make the evaluation process manageable.

The first step in XAIface’s face-recognition reference pipelines is the face-detection step
robustly extracting potential face locations in an arbitrary image or video frame. Several
face-detection datasets and related testing protocols have been proposed in the literature
e.g. Face Detection Data Set and Benchmark (FDDB) (Jain and Learned-Miller 2010) or
Annotated Faces in the Wild (AFW) (Zhu and Ramanan 2012). Nevertheless, due to the
progress in the face detection research community, it has been necessary to increase the
difficulty in pose, scale, facial expression, occlusion, and background clutter thus leading to
more complex databases and protocols such as WIDER FACE (Yang et al. 2016). Its
evaluation protocol follows an external/internal scenario where the face detector is trained
either on any external data or on a provided training/validation partition. The test data
partition is always separated. The detection metrics follow the definition of the bounding box
evaluation metrics defined in the PASCAL VOC dataset (Everingham et al. 2010) which is
basically the ratio of overlap ratios (intersection over union) exceeding 50% area coverage.

Regarding the training protocol, face recognition protocols can be mainly grouped according
to subject-dependant and subject-independent protocols (Wang and Deng 2021).
Subject-dependent protocols (e.g. used in the early FERET (Phillips et al. 1998) or even
challenge 2 of MS-Celeb-1M (Guo et al. 2016)) predefine all testing identities in the training
set and thus the recognition process is reduced to a simple classification problem. This is
much easier to handle as subject-independent strategies, where the testing identities are
different from the training data and thus the recognition model has to generalize the
representation for all unknown faces - exhibiting heavy intra-subject variations. Anyway,
subject-independent protocols are of higher practical relevance and thus most major
face-recognition benchmarks such as LFW (Huang et al. 2007), IJB-x (Maze et al. 2018) or
Megaface (Aaron and Ira 2017) follow this paradigm and are thus taken into consideration
for our project.

Regarding the evaluation protocol, practical usage is of main interest for the face recognition
testing procedure. One of the most important recognition protocols with high practical
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relevance to access and control systems is face-verification. Face-verification is a 1:1
similarity checking protocol directly comparing two face-images or features either if they are
from the same or different persons (= typical access scenario). Typical measures used for
comparison are the receiver operating characteristics (ROC) or simplified, single number
measures such as “mean accuracy” or the true acceptance rate (TAR) at a certain working
point with a defined false accept rate (FAR).

Face-identification is a more difficult 1:N (one to many) evaluation protocol relevant to e.g.
forensic or in-video searches which can take place in “closed-set” or “open-set” scenarios.
The “closed set” scenario compares only faces inside a certain database (all
person-identities are “known”), while the "open-set" identification scenario includes also
“query” instances which are not encoded in the database (identities are ”outside” the
database) and their robust detection is an additional challenge for the recognition system.

The most important performance measure for the closed-set face re-identification process is
the so-called rank-N metric based on the percentage of correctly returned matches (retrieval
rate) within the top N results. Note, that rank-1 metric as e.g. used in IJB-x protocol definition
is identical to the exact match returned. For the open-set identification scenarios, the
performance measures are more focussed on the applicability of high throughput
applications such as video-browsing, and large scale face-search systems. According to
Wang et.al. (Wang and Deng 2021) there are currently only a very few challenges to the task
of open-set face-recognition such as e.g. IJB-x (Maze et al. 2018). Typical performance
measures are false-negative and false-positive identification rates (FNR, FPR) - sometimes
diagrammed also in a ROC-manner to allow for proper threshold selection or comparison
according to a selected, common working-point.

The face-recognition pipeline(s) selected by XAIface consortium so far consists of a
Retina-Face based face-detection and ArcFace / MagFace face-recognition modules. For
the face detection protocol, we will follow the WIDER FACE (Yang et al. 2016) protocol using
bounding box coverage as performance measure, as the database is one of the latest and
most complex ones published in the last years. Unfortunately, the protocol of WIDER FACE
does only contain annotations for training and validation. The latter can be used for
verification tasks but for the testing protocol we will have to rely on several pre-trained
models (publicly available) which can be used as “indirect” ground-truth replacement.
Moreover, it will be possible to submit detection results to the organizers of the original
WIDER FACE challenge from time to time and get  independent results15.

For the face recognition part of the XAIface pipelines we select two protocols from the five
candidates already identified above namely IJB-x and LFW (Huang et al. 2007)-protocol.
The main reason for this is that the FERET (Phillips et al. 1998) protocol and database are
rather old (approx. 20 years) and thus outdated. Megaface (Aaron and Ira 2017) and
MS-Celeb-1M (Guo et al. 2016) should not be used anymore due to the information on
database-homepages and several research pages (e.g.

15 This statement is based on JOANNEUM RESEARCH personal experience from other projects
using WIDER FACE as a reference protocol.
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https://paperswithcode.com/datasets). We briefly describe those two protocols in the
following.

The most recent protocol of the latter two we will focus the IARPA Janus Benchmark-C
face challenge16 (IJB-x) - published in 2018 - which is actually one of the most recent and
most comprehensive protocols and database definitions based on conducted literature
research. Besides standard anchor verification and 1:N identification protocols, it also
provides end-to-end evaluations, including detection + recognition modules in still images
AND videos. This is also of main interest for the practical usage of such reference pipelines,
and hence we will use it as the main evaluation anchor in the XAIface project.

The challenge description17 defines 8 protocol-tests from which we select the following 2
main anchors namely a.) Test 1: 1:1 Verification and b) Test 4: 1:N Mixed search for our
project..

Other anchors as e.g. Test 11: Wild Probe Mixed for end-to-end benchmarking or even
Test 6: Face Detection (in the case the WIDER FACE anchor selected shows some
shortcomings during evaluation) might be selected in later stages of the project and
described in later versions of this document. Moreover, the IJB-C protocols provide two
disjoint “galleries” used to support 1:N open-set identification scenarios.

Regarding the performance measures, we will use receiver operating characteristics ROC
for the verification scenario and average Cumulative Match Characteristic (CMC) - a ROC
like graphical visualization of retrieval rate (%) plotted against logarithmic rank-n for
validation of XAIface-reference pipeline implementations and measuring the influence of
developed explainability modules. In addition we will also use the Detection Error Trade-of
(DET) curve, a similar graphical visualization like ROC plotting false rejection rates (FRR)
versus false acceptance rates (FAR) using logarithmic scales.

Please note, that in contrast to traditional verification tasks IJB-C utilizes the concept of
subject-specific modeling, in which a single template is generated for a subject based upon
the available pieces of media – a paradigm shift from the traditional process of creating a
template for every available piece of media (e.g., still images and frames) (Maze et al. 2018).
We are confident that this concept of averaging over certain templates will not degrade
explainability capabilities and eventually slightly modify the protocols in the case of
problems.

The second protocol we selected is LFW. Despite being originally released in 2007, the LFW
database and protocol for face verification18 is still very useful due to the fact that a lot of
algorithms use it as a reference for face verification (1:1 matching, pair matching). Moreover,
up to now a lot of comparable methods are still published and thus it is still a valid
benchmark. Currently, 4 different variants of the database exist (original, funneled (ICCV
2007), aligned LFW-a, and "deep funneled" images (NIPS 2012) where the latter two provide

18 http://vis-www.cs.umass.edu/lfw/
17 https://www.nist.gov/document/readmepdf-1
16 https://www.nist.gov/programs-projects/face-challenges
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the best results (Learned-Miller et al. 2016). In our project we decided to use the original
version.

According to the protocol defined in (Huang et al. 2007) to minimize fitting to test data our
reference protocol will use only group 2 of the two views provided for algorithm development
(validation) and performance reporting respectively as we will not retrain the pipelines in our
project. With respect to the 6 protocol and results paradigms mentioned in the reference
above we will use the one with the least restrictions regarding the training as we do not plan
to train on LFW database. In particular, we choose protocols and reference results from
“unrestricted, labeled outside data”19 giving the freedom to use additional or even different
training data (annotations) and potential labelings. Hence the results reported by the
selected protocols will be the “mean classification accuracy μ and standard error” as well as
the ROC-curves (TPR/FPR) averaged over 10 folds (provided) of view 2. Please note that
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In the next section we describe the implementation of the protocols together with the desired
target values. All the reference pipelines and protocols selected will be stored on a joint GIT
repository and each partner of the project should install a local copy and ensure that the
code works well and produces the same (desired) baseline results in order to have a fair
comparison between partners and against literature or developed explainability approaches.

19 http://vis-www.cs.umass.edu/lfw/results.html#UnrestrictedLb
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6. Performance Metrics and Human
Assessments

6.1. Objective Metrics
A face recognition system can operate in two modes depending on the application scenario,
i.e., verification and identification. Identification mode can be further classified as either
closed-set or open-set problem, depending on whether the probe set includes identities that
are not in the database. Many objective performance metrics are designed to assess the
performance of the learning-based face recognition system in different tasks, that are face
verification, closed-set face identification, and open-set face identification.

6.1.1. Metrics for Face Verification
Face verification system computes one-to-one similarity between a captured probe image
and the registered image in the database and determines whether they belong to the same
identity. The outcome of a face verification system is binary - negative (i.e. no match) or
positive (i.e. a match). We define P to be all positively predicted results and N to be all
negatively predicted results. If a positive prediction is correct, it becomes a "True Positive"
(TP), and otherwise designates it as "False Positive" (FP). Similarly, if a negative prediction
is correct, it becomes a "True Negative" (TN), in contrast to a "False Negative" (FN) if it is
not correct.

Face verification system is classically assessed by False Match Rate (FMR), False
Non-Match Rate (FNMR), Detection Error Tradeoff (DET) curve, mean verification
accuracy (ACC) and receiver operating characteristic (ROC).

FNMR refers to the proportion of genuine attempts that are falsely declared not to match a
template of the same object. Given a vector of genuine scores, , the false non-match rate𝑁 𝑢
is computed as the proportion below some threshold, :𝑇

,𝐹𝑁𝑀𝑅(𝑇) = 1 − 1
𝑁

𝑖=1

𝑁

∑ 𝐻(𝑢
𝑖

− 𝑇)

where is the unit step function, and taken to be 1.𝐻(𝑥) 𝐻(0)

The FMR is the rate at which a biometric process mismatches biometric signals from two
distinct individuals as coming from the same individual. So similarly, given a vector of 𝑁
genuine scores, , the false match rate is computed as the proportion above :𝑣 𝑇

.𝐹𝑀𝑅(𝑇) = 1 − 1
𝑁

𝑖=1

𝑁

∑ 𝐻(𝑣
𝑖

− 𝑇)

The DET characteristic represents the tradeoff between the above two errors. It plots false
non-match rate (FNMR) (Y axis) vs. false match rate (FMR) (X axis) parametrically on
threshold , and often uses logarithmic scale.𝑇
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Accuracy is simply defined as the percentage of the correct verification pairs and is based on
the binary outcomes with "True Positive" (TP), "False Positive" (FP), "True Negative" (TP)
and "False Negative" (FN).

𝐴𝐶𝐶 =  𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

The ROC curve is created by plotting the true accept rate (TAR) against the false accept rate
(FAR) at various threshold settings. Under biometric context, TAR measures the percentage
of times that a system correctly verifies a true claim of identity, while FAR is defined as the
fraction of impostor comparisons that exceeds the threshold incorrectly.

𝑇𝐴𝑅 =  𝑇𝑃
𝑇𝑃+𝐹𝑁

𝐹𝐴𝑅 =  𝐹𝑃
𝐹𝑃+𝑇𝑁

In general, the lower the cut-off threshold on a positive class, the more samples will be
predicted as positive, i.e. higher true accept rate and false accept rate. There is a trade-off
between a high true accept rate (TAR) and low error (FAR). To exactly evaluate the
performance of a model based on its ROC curve, Area Under ROC curve (AUC) has been
proposed. It takes value from 0 to 1, where a value of 0 means perfectly in accurate
verification while value of 1 reflects the correct verification performance. In general, AUC=0.5
suggests that the model has no discrimination between two faces.

With the development of learning-based techniques, more accurate face recognition systems
and evaluation metrics are required. Nowadays, customers of biometric applications
consider more about the true accept rate (TAR) when the false accept rate (FAR) is a very
low rate in most security verification scenarios. The new evaluation metric is denoted as
TAR@10-x FAR, where x is usually an integer ranging from 1 to 6. For instance, IJB dataset
(Maze et al. 2018) evaluates TAR@10-3 FAR, Megaface (Meng et al. 2021) dataset focuses
on TAR@10-6 FAR.

6.1.2. Metrics for Closed-set Face Identification
Face identification task determines a probe face image belonging to which registered identity
in the gallery set. The probe face is compared with every subject in the gallery set. Thus, the
identification task is often referred to as one-to-N face matching.

In the closed-set scenario, the identity of each probe face is already registered in the gallery
set. Rank-N and cumulative match characteristic (CMC) are commonly used metrics in
this scenario.

Specifically, the given identification protocol matches a probe face against a gallery set of
enrolled face images and returns results in rank-order based on the similarity scores. The
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rank-N metric reports the percentage of probe searches that are the true-match and are
ranked at top-N of the ranking list. Whilst the CMC curve is created by plotting identification
rate against given rank values. The identification rate refers to the fraction of correctly
identified probe faces. Therefore, the CMC curve reports the percentage of true matching
under a given rank.

6.1.3. Metrics for Open-set Face Identification

The open-set identification task refers to the scenario that the identity of a probe face is not
necessarily contained in the gallery set, which is more challenging to a face recognition
system. The true positive identification rate (TPIR) and false positive identification rate
(FPIR) are the most used metrics for open-set face identification tasks, more specifically for
the following two situations.

Firstly, the identity of the probe face image corresponds to a registered identity in the gallery
set. This situation is often called mate searching. A succeed mate searching means
TPIR which represents the proportion of successful trials of mate searching. The second
situation is called non-mate searching, where the probe face does not correspond to any
registered identity in the gallery database. The FPIR is used to measure the proportion of
non-mate probes that are wrongly identified as enrolled identity in the gallery set.

6.2. Human Assessment
In facial recognition related Operational Technology, human intervention takes place either in
order to validate an adapted model before pushing to production, or on individual recognition
result level (Human-Algorithm Teaming). Both interpretations will be discussed briefly in this
subsection.

6.2.1. Metrics for Open-set Face Identification
To satisfy quality requirements and standards for responsible AI, models can be evaluated
by data science specialists prior to application as part of the deployment workflow.  This is
generally referred to as Human-in-the-Loop (HITL) Machine Learning, whereas a human
actor feedbacks low confidence results in order to improve the model while it is still in
training, or manually checks the model for flaws before it goes live in a productive system as
part of the business process. These approaches help ensure the quality of the applied model
and have been implemented by multiple integrated machine learning software products
(Ettun et al. 2020) (Wolfewicz et al. 2022). The process can be applied to both supervised,
as well as unsupervised learning.

6.2.2. Human Validation of Face Recognition results
Once a model is deployed and in use in a productive system, processes concerning the
manual validation of algorithmic Face Recognition classification results can be put in place.
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In this case, a human operator confirms or denies the classification proposed by the
algorithm.  Such approaches help with issues concerning accountability and acceptance,
since a human is still in the loop and verifying the result. It has although been shown, that
computers have indeed surpassed humans in precision with regards to binary Face
verification tasks (Lu and Tang, 2015). Another important point to consider regarding human
validation of individual Face Recognition results is the bias introduced into human decision
making when teaming between human actors and algorithms take place (Howard et al.
2022). The decisions of test subjects in this context were equally influenced by labels stating
the result was generated by an algorithm as they were influenced by labels stating it was a
human’s prior decision. The Stanford Institute for Human-Centered Artificial Intelligence
recommends rigorous piloted A/B Testing in order to assess the impact of Face Recognition
outputs on the decisions of its users to detect and counter biased decisions (Ho et al. 2020).
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7. Benchmarking
Benchmarking is defined as the process of assessing/measuring the performance of
products, services and systems against those known to be leaders or references in one or
more aspects of their operations, under well-defined conditions, typically according to
representative application scenarios. Benchmarking provides key insights to help
understanding how a product, service or system compares with similar, alternative products,
services and systems. As such, benchmarking can help to identify areas and tools for
improvements—either incremental (continuous) improvements or dramatic (process
re-engineering) improvements.

Naturally, in the context of XAIface, benchmarking refers to face recognition systems and the
reference benchmarking systems are the selected XAIface face recognition pipelines,
notably based on the ArcFace and MagFace face recognition models. These reference face
recognition systems have been selected due to their face recognition performance as well as
their adoption and popularity as reference solutions in the face recognition research
community.

In the context of XAIface, benchmarking may not only refer to the comparative performance
assessment of novel face recognition models but, more importantly, to the comparative
performance assessment of novel face recognition systems, eventually extending the
ArcFace and MagFace reference systems, also including explainability tools. Explainability is
becoming increasingly important for systems that rely on deep learning models, being one of
the key objectives of the XAIface project, notably to “create tools that will allow assessment
and measurement of performance and explanation of decisions of AI-based FR systems”.
Since face recognition explainability may come at some face recognition performance cost,
benchmarking is essential to address another key objective of the XAIface project, namely to
“optimize the trade-off between interpretability and performance”.

With appropriate benchmarking, the face recognition solutions extended with novel
explainability tools, to be developed in XAIface, will be characterized in terms of face
recognition performance in relation to largely adopted reference solutions, notably in terms
of the explainability versus recognition performance trade-off. This will allow adjusting this
trade-off for different application domains, notably depending on how critical is the decisions’
explainability for each of them.

In the context of XAIface, appropriate benchmarking involves defining the precise, complete,
meaningful processes and conditions under which different face recognition systems,
notably with different explainability capabilities, may be compared in terms of face
recognition performance. The XAIface benchmarking processes and conditions involve four
key dimensions:

1. Face recognition system – The first dimension refers to the face recognition system
which performance is being assessed, notably in comparison with the XAIface face
recognition reference systems, i.e. ArcFace and MagFace (using ResNet50 or
ResNet100), see Section 3. The XAIface reference face recognition systems should
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be the first to be assessed to establish the reference performance to which the other,
e.g. explainability-extended systems, will be compared. As for the XAIface reference
systems, the recognition system under assessment may include several tools beyond
the core face recognition model, e.g. ResNet50 or ResNet100. This is already the
case with the RetinaFace tool included in the reference systems to perform face
detection before the face recognition itself. Ablation experiments may be easily
performed by defining subsets of the complete systems for evaluation purposes, thus
excluding specific tools, to assess their specific impact on the final performance.

2. Face datasets – The second dimension refers to the selected face datasets adopted
for model training, validation and testing since they are critical for the definition of the
overall face recognition performance, see Section 4. Performing benchmarking using
different face datasets for different face recognition systems would introduce another
variable in the performance comparison process beyond the face recognition system
itself, thus making it more difficult to derive solid conclusions.

3. Experimental protocols – The experimental protocol dimension refers to the type of
recognition task whose performance is being measured using the selected face
datasets. The most common face recognition tasks are the so-called verification and
identification, which lead to the definition of verification and identification
experimental protocols. For example, the ISO/IEC 2382-37:2017 standard defines
“Verification as the process of confirming a biometric claim through biometric
comparison” and “Identification as the process of searching against a biometric
enrolment database to find and return the biometric reference identifier(s) attributable
to a single individual”. These protocols have to be precisely defined for solid
benchmarking, see Section 5, since it is common to see in the literature protocols
with the same name (thus ideally addressing the same basic recognition task) but
corresponding to slightly different approaches, e.g. on the way they process the
probe and gallery/dataset faces, thus leading to values for the performance metrics
being reported that cannot be fairly compared.

4. Performance metrics – Finally, the last benchmarking dimension defines the precise
performance metrics to be considered for each experimental protocol, e.g.
verification and identification, see Section 6.

Table 7.1 illustrates the benchmarking dimensions and provides examples of key
instantiations for each dimension. For the first dimension, i.e. the face recognition system,
the examples include the XAIface reference face recognition systems, ArcFace and
MagFace, using the ResNet50 or ResNet100 models, and preceded by RetinaFace for face
detection; moreover these reference systems may integrate one of more explainability tools
(e.g. tools A and B) and, finally, other face recognition systems (e.g. system X) may be also
assessed with or without explainability tools. For the second dimension, i.e. the face
datasets, it is important to distinguish the training, validation and testing datasets; naturally,
for directly comparable performance results, it is critical that the same training, validation and
testing datasets are used. For the third dimension, i.e. experimental protocols, several
protocols may be defined although the verification and identification protocols are clearly the
most commonly used. Finally, for the fourth dimension, an appropriate set of performance
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metrics has to be selected, notably considering the selected experimental protocol, e.g.
verification or identification.

Table 7.1: Benchmarking dimensions with example instantiations.

Face Recognition
System

Face Datasets
(training and

testing)

Experimental
Protocols

Performance
Metrics

● RetinaFace +
ArcFace
(ResNet 50)

● RetinaFace +
ArcFace
(ResNet 100)

● RetinaFace +
MagFace
(ResNet 50)

● RetinaFace +
MagFace
(ResNet 100)

● …
● RetinaFace +

ArcFace
(ResNet 100)
with
explainability
tool A

● RetinaFace +
ArcFace
(ResNet 100)
with
explainability
tools A and B

● …
● Face

recognition
system X with
explainability
tool A

● Face
recognition
system X with
explainability
tool B

● …

● Training
○ MS1MV2
○ LFW
○ IJB-B
○ IJB-C
○ …

● Validation
○ …

● Testing
○ MS1MV2
○ LFW
○ IJBB
○ IJB-C
○ …

● Verification
○ …

● Identification
○ Closed-set
○ Open-set
○ …

● …

● False Match
Rate (FMR)

● False
Non-Match Rate
(FNMR)

● Failure-To-Enrol
rate (FTE)

● Failure-To-Acqui
re (FTA)

● Detection Error
Trade-off Curve
(DET)

● TAR (@FAR)
● Verification

accuracy (%)
● Receiver

Operating
Characteristics
(ROC)

● Rank-1
identification

● Rank-N
identification

● False Negative
Identification
Rate (FNIR)

● True Positive
Identification
rate (TPIR)

● Cumulative
Match
Characteristic
(CMC)

● …

In practice, performing the benchmarking of a specific face recognition system implies
selecting a path along the four dimensions in Table 7.1. For example, different recognition
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tasks, e.g. verification versus identification, imply selecting benchmarking paths which are
different at least in the last two dimensions.

The comparison of performance results obtained for equivalent benchmarking paths with the
exception of the system in the first dimension is fair and reasonable and thus allows
obtaining solid conclusions regarding the direct comparison of the involved systems. Very
often one of the systems under comparison, which is taken as anchor is one of the XAIface
reference pipelines.

In summary, appropriate benchmarking is critical for the efficient development of novel face
recognition tools and systems, notably explainability tools as those to be developed in the
XAIface project, notably to identify which tools bring effective performance benefits.
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8. Conclusions
While face recognition is a long-standing technology and has been widely used in various
applications, the explainability of such technology has received relatively less attention and
achieved little progress. It is a critical issue to fully understand and explain the decisions
made by face recognition systems, which is still an open challenge for even the current
state-of-the-art face recognition systems, in particular for the deep learning-based
technologies. One of the key objectives of this project is to identify the influencing factors,
measure and explain their impacts such that one can better understand the underlying
mechanisms in a black-box face recognition system and increase the degree of trust.

To help identify the significant influencing factors and measure their impact, a rigorous and
systematic evaluation approach is required. In this context, this deliverable contributes to the
project by providing a new methodology for performance assessment, by summarizing a
comprehensive benchmarking workflow and by providing thorough literature investigation for
each key element of the benchmarking process.

In Section 2, a new performance evaluation methodology is firstly proposed, which serves as
an assessment framework in XAIface context and quantitatively analyzes the impact of each
influencing factor to a face recognition system. In this framework, a wide range of influencing
factors from both extrinsic environments and intrinsic data processing operations are
considered. Afterward, a rigorous benchmarking process is illustrated, which offers an
impartial and comparative performance assessment for different influencing factors. The four
indispensable elements, that are reference face recognition pipelines, face datasets,
evaluation protocols, and performance metrics, are described respectively. More specifically,
Section 3 gives detailed description on two state-of-the-art face recognition solutions,
notably ArcFace and MagFace. A large number of facial datasets for both training and
testing purposes are included in Section 4. Section 5 introduces the evaluation protocol used
for both verification and identification tasks. The performance metrics are summarized in
Section 6, which helps in quantifying the impact of each influencing factor. Finally, the four
key elements are integrated and the overview of such a benchmarking process is illustrated
in Section 7.

To conclude, a rigorous evaluation framework and benchmarking approach is critical to
achieve the objective of the XAIface project, particularly the goal of identifying and
quantifying the impact of potential influencing factors to a face recognition system. The
proposed assessment framework and the benchmarking process in this deliverable have a
close collaboration with D2.1, where a comprehensive list of parameters are investigated.
Additionally, it provides an evaluation system and an overall guideline to precisely identify
the influencing factors and quantify their impacts.
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