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Short abstract
Deliverable D4.1 – “Explainability protocol and methods” – reports the consortium work
towards the development of explainable techniques for face recognition during the project.
The deliverable has been published in two versions, one in month 12 and one in month 24.

The first version (v1) already summarised relevant existing explainability techniques for AI
face recognition solutions addressing both the cases of creating transparent models and
post-hoc explanation of black-box models, described some plans and evaluation
performance protocols, and provided a first analysis of ethical and legal issues.

This is the second version of the deliverable which, in addition to v1 provides more detailed
descriptions of the methods initially described in version 1, collects descriptions of additional
methods developed and includes performance results obtained during experiments with their
first implementations. The chapter addressing ethical and legal issues is extended and
provides a more in depth look at various examinations of "interpretability"-requirements
according to the AI-Act proposal.
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Abbreviations

AI Artificial Intelligence
CAM Class Activation Maps
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Networks
DET Detection Error Tradeoff
DL Deep Learning
EBM Explainable Boosting Machine
FAD Feature Activation Diversity
FMR False Match Rate
FNMR False Non-match Rate
FR Face Recognition
GDPR General Data Protection Regulation
JPEG Joint Photographic Experts Group
LIME Local Interpretable Model-Agnostic Explanations
LMF Large Magnitude Filtering
LRP Layer-wise Relevance Propagation
RISE Randomised Input Sampling for Explanation
RNN Recurrent Neural Network
SAD Spatial Activation Diversity
SHAP SHapley Additive exPlanations
XAI Explainable Artificial Intelligence
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Definitions

ArcFace is a CNN based model for face recognition which learns discriminative features of
faces and produces embeddings for input face images. To enhance the discriminative power
of softmax loss, a novel supervisor signal called additive angular margin (ArcFace) is used
as an additive term in softmax loss.
Automation bias: Over-reliance on automated aids and decision support systems.The
same concept can be translated to the fundamental way that AI and automation work, which
is mainly based on learning from large sets of data. This type of computation assumes that
things won’t be radically different in the future. Another aspect that should be considered is
the risk of using flawed training data then the learning will be flawed.
Bagging is an ensemble learning technique that helps to improve the performance and
accuracy of machine learning algorithms. It is used to deal with bias-variance trade-offs and
reduces the variance of a prediction model.
Demographic information: Socio-economic information from a subject such as population,
race, income, education and employment.
Explainable AI (XAI) is artificial intelligence that is programmed to describe and understand
its purpose, rationale and decision-making process in a way that can be understood by the
average (human) person.
Greedy algorithms are any algorithm that follows the problem-solving heuristic of making
the locally optimal choice at each stage.
Kernels are filters used to extract the features from the images. More specifically, a kernel is
a matrix that moves over the input data, performs the dot product with the sub-region of input
data, and gets the output as the matrix of dot products.
MagFace is a category of losses that learns a universal feature embedding whose
magnitude can measure the quality of the given face. Under the new loss, the magnitude of
the feature embedding monotonically increases if the subject is more likely to be recognized.
In addition, MagFace introduces an adaptive mechanism to learn well structured within-class
feature distributions by pulling easy samples to class centres while pushing hard samples
away. This prevents models from overfitting on noisy low-quality samples and improves face
recognition in the wild.
Pooling layers: Used to reduce the dimensions of the feature maps. It reduces the number
of parameters to learn and the amount of computation performed in the network. The pooling
layer summarises the features present in a region of the feature map generated by a
convolution layer.
Post-hoc: Analysis of the results of experimental data.
Random forest is a Supervised Machine Learning Algorithm that is used widely in
Classification and Regression problems. It builds decision trees on different samples and
takes their majority vote for classification and average in case of regression.
Soft biometrics are attributes that are not necessarily unique to an individual, but can be
used alone or in conjunction with primary biometric traits for improving performance or
explainability in a variety of applications.
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1. Introduction
The objective of deliverable D4.1 “Explainability protocol and methods” is to plan, report and
track the consortium work towards the development of explainable techniques for face
recognition during the project.
This deliverable is published in two versions, one in month 12 and one in month 24 of the
XAIface project. The second version, in addition to collecting the description of the methods
developed, also includes a more detailed description of the performance assessment of the
proposed methods and their links to legal and ethical aspects and issues that they may
raise.

The document contains the following sections:
- Section 1: Introduces the general motivation for the document and introduction.
- Section 2: Provides an overview of the state of the art of AI explainability methods,

focused on face recognition domain. The reported methods should give a necessary
background for the development of new methods. Thus, the methods described are
already used - or seem at least promising (potentially applicable) - for Explainable
Artificial Intelligence (XAI) face recognition.

- Section 3: Describes the development of new methods and reports on their progress
and performance assessment. This section also provides a link between the
developed methods and the eventual legal and ethical issues described in Section 4
of this document.

- Section 4: Provides an assessment of potential legal and ethical issues for the
face-recognition systems and questions regarding the right to obtain explanations are
elaborated and discussed.

1.1. Motivation
Face recognition has become a key technology in our society, frequently used in multiple
applications, while creating an impact in terms of privacy. As face recognition solutions
based on artificial intelligence (AI) are becoming more and more popular, it is critical to fully
understand and explain how these technologies work in order to make them more effective
and accepted by society. Thus in XAIface, we focus on the analysis of the influencing factors
relevant for the final decision of an AI-based face recognition system as an essential step to
understand and improve the underlying processes involved.

Most state-of-the-art work regarding XAI is nowadays working either on the development of
transparent machine learning models, or on the application of post-hoc explainability models.
While transparency is most often an inherent property of simpler, classical machine-learning
models, state-of-the-art (more complex) face recognition methods require “post-hoc” or
“post-modelling” explainability techniques like simplification, feature relevance, or class
activation maps. Of major interest are also model-agnostic techniques, which can be
plugged into any model to extract information from the (black-boxed) prediction process.
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Another related aspect is attention, as this will also facilitate the understanding which
features of a face contributed to the decision made. Attention is a mechanism allowing the
model to focus on certain parts of the input sequence when predicting a certain part of the
output sequence, enabling easier learning and of higher quality. Attention can be introduced
into different network architectures, such as multi-task networks or recurrent neural networks
(RNNs). In face recognition, it has for example been proposed for weighting features in face
verification and identification. Also, attention has been used to select face local patches
without resorting to face landmarks. A related application of attention is modifying face
attributes in generative approaches, which could be a component in adversarial learning.
Some of these methods are also reviewed in Section 2.

Another main field this project will contribute to knowledge beyond state of the art in XAI will
be the progress in optimising the tradeoff between interpretability and performance. This will
be addressed by the development of adjustable explainability components of face
recognition pipelines, which may affect some or all components of the pipeline. The plans for
this work as well as results obtained so far are outlined and reported in Section 3.
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2. Related Literature Works for AI Explainability
with Potential Application for Face Recognition

In this section, a brief overview of state-of-the-art methods related to the planned XAIface
contributions to AI face recognition explainability is provided. This review will serve as
background to understand the developed techniques in XAIface as well as highlighting the
contributions of XAIface to the state of the art.

2.1. General Observations
Model explainability, one of the most important problems in machine learning today, refers to
the concept of being able to understand a deep learning network. It aims for a better
comprehension of why machine learning models make certain decisions and which factors
are most relevant for it.

Being able to interpret a machine learning model leads to several benefits because
understanding the decision process of a network increases the user's trust in the prediction,
helps to debug a model during its development phase and can be relevant in determining
whether or not a model is suitable for a real world application. Model interpretability, when
successfully performed, can also help and guide in assessing the presence of bias.

In the existing literature, many classifications of explainability models have been used. In this
document we distinguish according to the following (most common) XAI grouping:
● Local vs. global methods: Local methods investigate a specific set of samples and

try to explain the model behaviour on those specific samples. In opposition, global
methods give an overall explanation of model behaviour by studying how features
collectively affect the final prediction.

● Model specific vs. model agnostic: Model specific techniques work under certain,
clearly defined model structures, while model agnostic tools work in a more general
manner by analysing directly the input-output pair without specific knowledge on the
model.

● White-box vs black-box models: A white-box model is a technique designed to be
explainable per se, thus it does not require any other additional explainability
technique on top or besides of it to interpret the decision process. A black-box model is
not explainable by itself. Instead of that it requires the adaptation of other techniques in
its pipeline in order to make it explainable. The main advantage of black-box models is
the fact that one can take an already trained model and train an explanation model on
top of it. As a general rule, the explainer is much easier to understand.

● Gradient-based backpropagation methods vs perturbation-based forward
propagation methods: Gradient-based methods investigate the signal flow through
the classifier, investigating how changes in the weights and parameters in the model
will influence the output. On the other hand, perturbation-based models change only
the input of the model and investigate how the output changes.
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2.2. Shapley-values (SHAP)
SHAP (Lundberg and Lee 2017), SHapley Additive exPlanations, is a framework for method
interpretability that gives data features and importance values for specific predictions. SHAP
values are based on Shapley-values, which refer in game theory to the average of all the
marginal contributions to all possible coalitions. This average is used as a baseline and
SHAP shows the impact of each feature by interpreting and measuring the relative impact of
a certain value compared to that baseline. In this way, SHAP values allow us to determine
any prediction as a sum of the effects or amount of influence of each feature value to the
final decision.

Interpreting a model using SHAP has the advantage of providing both local and global model
interpretability simultaneously. The contribution of each predictor to the final prediction,
positively or negatively, can be measured by looking at the collective SHAP values thus
ensuring global interpretability. Furthermore, each individual sample obtains its own set of
SHAP values allowing us to assess and compare the relevance and impact on the final
prediction of all individual factors. It is also important to mention that the calculation of the
SHAP values is computationally expensive. In fact it is exponential in the number of features
and this can be especially critical for highly dimensional (face-) features.

Summing up SHAP is a model agnostic technique thus it focuses on analysing the relation
between the inputs and the predictions for black-box approaches in a perturbation-based
forward propagation manner. Its adaptability to any type of deep learning structure makes it
especially interesting for the project since SHAP can help to understand the most significant
regions for face recognition and to check if those areas are consistent among different face
recognition systems.

2.2.1. BreakDown
BreakDown (Staniak and Biecek 2018) is similar to SHAP. It is also based on the conditional
response of a black-box model and it then attributes the response to the input features. The
only difference is that breakDown deals with conditionings in a greedy way instead of
averaging.
A GitHub implementation of the method can be found at:

https://github.com/MI2DataLab/pyBreakDown - python

https://github.com/pbiecek/breakDown - R

2.3. Local Interpretable Model-agnostic
Explanations (LIME)

LIME (Ribeiro et al. 2016) (Local Interpretable Model-Agnostic Explanations) is one of the
most important interpretability techniques developed by University Of Washington
researchers to study the decision process inside an algorithm by capturing feature
interactions. It is a model agnostic technique that analyses the relation between the input
data and the prediction in a perturbation-based forward propagation manner, therefore it can
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be used on any model acting as a surrogate model. LIME modifies a test data instance by
altering its input values (slightly) and observes the impact on the output. LIME tries to model
the local neighbourhood of any prediction by focusing on a small decision surface around the
input point. The basic assumption is that even very simple (linear) models are a good
approximation of the black-box model under investigation. Those more simple models are
often linear/logistic regressions or decision trees. More specifically, LIME defines distance
measures in order to compute the distance between the original sample and the altered one.
Then, new predictions are computed by passing the altered samples through the black-box
model. After that, LIME picks a number “n” of features by maximising the maximum
likelihood, in order to select the “n” features that better describe the deep learning network.
Those features are used to fit a simple model to the permuted data with the similarity scores
as weights. Finally, by looking into this simple (surrogate) model, it is possible to get insights
into the initial black-box model.

The main advantage of LIME is its ability to maintain local fidelity even when the number of
dimensions is high. LIME ensures this property by finding a model that approximates the
black-box model only locally. It is also able to handle irregular inputs. On the other hand,
there is the danger that a bad or insufficient approximation might lead to misleading
explanations. In addition, explanations are sometimes unstable and depend on the
underlying process of input perturbation. LIME has been considered of interest for XAIface
since it can provide quantitatively visual information on the most relevant image regions for
face recognition tasks for any type of deep learning structure.

2.4. Saliency Maps for CNNs
Saliency maps are a special visualisation technique providing insight into the decision
making process of a neural network. Several methods have been proposed in literature and
in principle they identify and highlight (e.g. via heat maps) the regions a network focuses on
when providing decisions. Several variants of these techniques exist, for example, Class
Activations Maps, which will be described in more detail in section 2.5. Here we focus on
one of the earliest approaches regarding saliency map visualisation, namely the
“deconvolutional network approach” from (Zeiler and Fergus 2014) which we will describe in
more detail in the following.

As the name might presume, this approach uses an inverted convolutional network
(deconvolution network) which maps all activations of the individual feature maps (in all
layers of the neural network, including the intermediate ones) to the corresponding input
patterns in the input pixel space.

Deliverable D4.1 10
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Figure 2.4a: Overview about the saliency map visualisation principle. The network on the left side reconstructs
an approximate version of the traditional convolutional neural network illustrated on the right side. The unpooling
operation in the bottom of the figure uses so-called “switches” to record the locations of the local max in each
pooling region (coloured zones) during traditional operation.

The illustration in Figure 2.4a – taken from (Zeiler and Fergus 2014) – outlines the principle.
The traditional image classification pipeline (ImageNet in this example) is shown on the right
side and processed from the bottom to the top direction. The deconvolution network
(deconv) is depicted on the left side and consists in principle by the same components, but
in reverse order. As in the deconv-network the features are mapped to pixels, inverse
operations of all convolutional network steps are required. While this is no problem for e.g.
“filter” operations by using their transposed kernel versions, the situation is more difficult for
non-invertible operations, e.g. max-pooling. In those cases only approximations of an
inverse are feasible. In the case of the max-pooling operation for example, the intermediate
“recording” (storage) of locations of the maxima within each pooling region in a set of
so-called “switch variables” can be used to overcome that issue.
Regarding the categorization in Section 2.1 the “deconvolutional network approach” requires
specific interventions (additional layers) within the structure of the neural network to provide
a proper explanation. Thus, the approach is definitely a model specific one. In addition, it
allows the explanation of each sample per se thus providing a global explanation of the
entire model behaviour for a sufficient number of testing samples analysed.
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2.5. Class Activation Maps (CAM), Grad-CAM, and
Grad-CAM++

Class Activation Maps (Zhou et al. 2016), or CAMs, is a deep learning interpretability method
used for CNNs. It is used to indicate the discriminative regions of an image used by a CNN
to identify the category of the image. In detail, the CAMs method performs the following
steps. First of all, it modifies the network architecture by replacing fully-connected layers in
the end by a Global Average Pooling layer and concatenates the averages of the activations
of convolutional feature maps that are located before the final output layer and create a
feature vector. The weighted sum of the vector is fed to the final softmax loss layer. Finally,
the important image regions are identified by projecting back the weight of the output layer to
the convolutional feature maps. Publicly available GitHub-implementations can be found at:

https://github.com/zhoubolei/CAM or https://github.com/frgfm/torch-cam

The main drawback of CAM is that it requires neural networks to have a specific architecture
in the final layer. This is not the case for the Grad-CAM (Selvaraju et al. 2019) method,
which is a generalisation of CAM that can produce visual explanations for any CNN
architecture. As a gradient-based method, Grad-CAM uses the class-specific gradient
information flowing into the final convolutional layer of a CNN, producing a coarse
localization map of the important regions in the image. Grad-CAM++ (Chattopadhay et al.
2018) is an extension of the Grad-CAM method that provides better visual explanations of
CNN model predictions.

Proper GitHub-implementations for Grad-CAM and Grad-CAM++:

https://github.com/jacobgil/pytorch-grad-cam

2.6. Layer-wise Relevance Propagation (LRP)
Layer-wise Relevance Propagation (LRP) is a framework that decomposes the prediction of
a deep neural network over a sample image down to relevance scores for image regions. It
helps to interpret highly complex deep neural networks by back-propagating the predictions.
The LRP method supports various data types, e.g. images, text, etc, and various neural
network architectures. Moreover, it has been successfully applied to explainable facial
expression recognition (Arbabzadah et al. 2016), and document categorization (Arras et al.
2017).

The main idea of Layer-wise relevance propagation is to trace back the contributions of input
nodes to the final network prediction. It performs backward propagation using a set of
purposely-designed propagation rules from the output, identifying the most relevant neurons
within the neural network until returning to the input. In detail, firstly the relevance score of
the specified node in the final layer is set as output. The relevance score is then back
propagated to the input layer. As a result, the prediction is decomposed into pixel-wise
relevance indicating the contribution of a neuron to the final decision.
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Figure 2.6a illustrates the general process and results of applying pixel-wise decomposition
and LRP method in image classification tasks. A deep learning-based image classifier
attempts to extract feature vector representations with deep convolutional neural networks
and perform prediction with some classification layers. The LRP method decomposes the
classification output into sums of feature and pixel relevance scores and consequently
generates a heat map visualising the contributions of every single pixel to the prediction.

Figure 2.6a. Visualisation of the pixel-wise decomposition process in image classification tasks.

Note that a (non-official) GitHub implementation is available at:

https://github.com/sebastian-lapuschkin/lrp_toolbox .

2.7. Explainable Boosting Machines
Explainable Boosting Machine (EBM) is a glassbox model, designed to have comparable
accuracy to state-of-the-art machine learning methods like Random Forest or XGBoost
(Chen and Guestrin 2016) while being highly intelligible and explainable (Nori et al. 2019).
They are very similar to generalised additive models (Hastie and Tibshirani 1987), but exhibit
a number of important improvements besides their ability to uncover the feature
contributions to the prediction of a model.
The basic idea behind of the approach is the selection of a simple additive model in the form
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𝑛

and are the (even non-linear) functionals covering more complex correlations between𝑓
𝑛

input and output. EBMs learn the feature functions by using modern machine learning𝑓
techniques such as bagging and gradient boosting. The boosting procedure is carefully
restricted to train on one feature at a time in round-robin fashion using a very low learning
rate so that feature order does not matter. Moreover it round-robin cycles through the
features to learn the best feature function and enables for easy estimation of the feature’s
contribution to the final prediction.
So in particular, the method uses very small trees (decision stumps) as sample and feature
specific functionals and each tree is trained using only one single feature at a time. So the
model created is a simple additive combination of trees (number of training samples) in the𝑟
form of
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and the sum of all trees for a particular feature represent the (highly non linear) functional .𝑓
The main advantage of EBMs in contrast to other approaches for explainability is their
capability to discover not only importances for individual feature-dimensions, but also for
(dual-feature) correlations. Higher order correlations are also possible in principle and first
implementations are already integrated in the InterpretML framework (https://interpret.ml/).
A potential disadvantage of the method is the fact that compared to other approaches the
training time is larger, but during inference the approach requires only simple additions and
lookups. This enables EBMs to be one of the fastest models to execute at prediction time by
coevally using low memory, as the trees can be represented as simple graphs and thus
deleted after the training.
EBMs are especially important for the XAIface project, as they are an inherent part of some
of the planned contributions described in section 3.1. They are a prototype for a
whitebox-model as each step in the decision process can be explicitly tracked through the
algorithm and explained. As they allow for the explanation of each single sample they can
provide global explanations of the entire model once a sufficient number of testing samples
are analysed.

2.8. Randomised Input Sampling for Explanation
(RISE)

Unlike white-box approaches that estimate pixel importance using gradients, RISE (Petsiuk
et al. 2018) works on black-box models. The RISE algorithm generates a saliency map for
any black-box model, indicating how important each pixel of the image is with respect to the
network's decision. This is similar to the saliency maps method mentioned before which
require access to the internal structure of the model, such as the gradients of the output with
respect to the input, intermediate feature maps, or the network’s weights. Therefore they are
limited to certain types of network architectures or layers.

In contrast to the plain saliency maps for specific networks presented before, RISE provides
a more general approach to produce saliency maps for an arbitrary network architecture.
Figure 2.8a illustrates the overall workflow of the RISE algorithm. In detail, it firstly generates
random binary masks following a uniform distribution. Then each input image is
element-wise multiplied with the random masks and the resulting image is subsequently fed
to the model for classification. The model produces probability-like scores for the masked
images. In the end, a saliency map for the original image is created as a linear combination
of the masks using the probability-like scores as coefficients.
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Figure 2.8a: Overview of the RISE algorithm. The input image I is multiplied with some randomly generated
masks Mi in an element-wise manner. The black-box model takes masked images as input and produces scores
of classes. The score vector serves as weights and linearly combines with the masks to create the saliency map.

RISE is an approach that explains black-box models via estimating the salient regions of
input images for the model's predictions. It matches the goal of the XAIface project as it
provides a way to interpret a face recognition model by highlighting the important regions of
two matching or non-matching faces.

A proper GitHub-implementation can be found at:

https://github.com/eclique/RISE

2.9. Spatial and Feature Activation Diversity
Losses for Structured Face Representations

The work presented in (Yin et al. 2019) proposes the usage of two loss functions – spatial
activation diversity loss and feature activation diversity loss – to learn more structured face
representations. Filters are learned end-to-end from data and constrained to be locally
activated with the proposed spatial activation diversity loss. The feature activation diversity
loss is introduced to better align filter responses across faces and encourage filters to
capture more discriminative visual cues for face recognition, notably when dealing with
occluded faces.
By leveraging the face structure, considering part-based representations, the proposed
spatial and feature activation diversity losses strive for interpretable representations, which
are discriminative and robust to occlusions. The authors claim that the final face
representation does not compromise recognition accuracy.
The system architecture proposed by (Yin et al. 2019) for learning meaningful part-based
face representations with a deep CNN, using carefully designed losses, is presented in
Figure 2.9a. It consists of a Siamese network with two branches sharing weights to learn
face representations from two faces: one with synthetic occlusion and one without.
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Figure 2.9a: Overall network architecture of the proposed framework. Spatial Activation Diversity (SAD) loss –
promotes structured feature responses Feature Activation Diversity (FAD) loss – enforces features to be
insensitive to local changes (occlusions).

The Spatial Activation Diversity (SAD) loss encourages the face representation to be
structured, with consistent semantic meaning. Softmax loss helps to encode the identity
information. The SAD loss learns one set of filters for discriminating the K considered
classes and employs the Large Magnitude Filtering (LMF), also proposed in (Yin et al. 2019),
which removes small magnitude values, favouring discriminative feature learning. SAD loss
improves the spatial spread of peak locations in the feature response maps, and more
spreadness indicates higher interpretability.

The Feature Activation Diversity (FAD) loss requires filters to be insensitive to the occluded
part, hence more robust to occlusion. The input to the lower network branch is a synthetic
occluded version of the top branch input. This way, parts of the face representation sensitive
to the occlusion are masked out, and training is performed to identify the input face solely
based on the remaining elements. As a result, the filters that respond to the non-occluded
parts are trained to capture more discriminative cues for identification. The FAD loss
encourages that any local face area only affects a small subset of the filter responses, thus
learning part-based face representations, when learning the network model. Therefore, the
learned filters are also robust to occlusions. This is achieved by leveraging pairs of face
images (one of them with a synthetically occluded region), enforcing the two feature
representations to be similar.

The implementation of the interpretable face model using the SAD and FAD loss functions is
available at:

https://github.com/yubangji123/Interpret_FR
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2.10 Identifying sources of Harm throughout the
Machine Learning Life Cycle
The work presented in (Susesh et al. 2021) aims to prevent and mitigate unexpected system
behaviours in real case scenarios. For doing so, the authors state that it is critical to
understand when and how harm might have been introduced throughout the model’s life
cycle. With this purpose, the authors divide the ML life cycle into two streams and identify
seven sources of bias, which may cause harm, across the two streams: 1) the data
generation stream can contain historical, representational, and measurement bias; and 2)
the model building and implementation stream can contain learning, aggregation, evaluation,
and deployment bias.
Each type of bias is defined as follows:

1. Historical bias replicates biases, like stereotypes, that are present in the world as is
or was;

2. Representation bias underrepresents a subset of the population in its sample,
resulting in poor generalisation for that subset;

3. Measurement bias occurs in the process of designing features and labels to use in
the prediction problem;

4. Aggregation bias arises when data contains underlying groups that should be treated
separately, but that are instead subjected to uniform treatment;

5. Learning bias concerns modelling choices and their effect on amplifying performance
disparities across samples;

6. Evaluation bias is attributed to a benchmark population that is not representative of
the user population, and to evaluation metrics that provide an oversimplified view of
model performance;

7. Deployment bias arises when the application context and usage environment do not
match the problem space as it was conceptualised during model development.

3. XAIface Contributions to AI-based Face
Recognition Explainability

In this section, we describe the implemented methods for explanations as well as some
preliminary and future ideas still under development and investigation by the XAIface
consortium. In particular we provide detailed descriptions of the successfully implemented
approaches and (basic) performance evaluations of the modules. A link to legal and ethical
guidelines concerned by each method is also shortly mentioned.

3.1. Explainable Face Recognition by Interpretable,
Local Features (LIBF)

3.1.1. Introduction
Although explaining the contribution of several parts of a face image using standard
explanation methods (e.g. Class Activation Maps (CAM), Grad-CAM, Grad-CAM++ or
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Saliency Maps) is very useful, the principle disadvantages of such methods already
mentioned (e.g. extra layer required, runtime issues, equivalency not guaranteed) are a
major drawback. For example, a well known, straightforward approach to explain the
end-to-end face-recognition process is the investigation of locally similar perturbations on
input images or features following the paradigm of local interpretable model-agnostic
explanations (LIME) already described in chapter 2.3, but the result, showing how specific
pixel perturbations on different locations influence the final results, are not intuitive for the
human. In case the recognition process fails, it will not be clear for the user how such single
pixel perturbations should be altered or even worse, how single face-feature dimensions can
be influenced in order to enable a successful recognition procedure. In other words, it would
be rather impossible to take any countermeasures to improve the recognition process by
altering the base (face-acquisition) situation with respect to any changes possible through
end-users interactions (e.g. by changing the light conditions, acquisition geometry or
presentation of different viewpoints).
Similarly, non-interpretability with respect to the original face image presented may occur in
the case of application of per se explainable and understandable algorithms (e.g. decision
trees) on face features obtained by deep learning. Face features in the latent space are
usually non-locality preserving, abstract representations (e.g. 512-dimensional ArcFace
features), and the influence of an individual feature dimension has no clear relation to the
locality of origin (root cause) in the input face image.
The proposed method in this chapter targets all the issues mentioned above, and it can be
seen as a general method for having the ability to map novel, human understandable and
traceable, and localised features to influence and importance parameters of the facial input
image. We name the method Locally Interpretable Boosted Features (LIBF) and describe the
method in more detail below.

3.1.2. Description of the LIBF method
In order to obtain meaningful explanations for the decisions of face recognition and hints on
how to eliminate failures through changes made by the end user of a system, we need to
solve two problems. The first one is related to the high complexity of classification layers in
state-of-the-art, unexplainable deep-learning based face recognition approaches, prohibiting
a direct traceability and understanding of decisions taken by a system. Although it is possible
to substitute the final classification layers by (inherently) understandable approaches (such
as e.g. decision trees), there is a significant loss in classification accuracy. The second one
is caused by the highly non-linear operations performed during calculation of deep-learning
based face-recognition features. Although it is possible to establish relations between certain
input pixels of the input image and the features obtained for classification (by e.g. LIME),
there is no guarantee for their spatial proximity and more important, human interpretability.
For instance it may be not intuitive, how single pixel perturbations can be altered or even
worse, how single face-feature dimensions can be influenced.

To overcome the two issues stated, we propose to combine the aspects of locally
interpreting the input data of the face-recognition pipeline with the easy explanation
capability of a lightweight classification engine. In particular we use the explainable boosting
machine from chapter 2.7 together with novel, human-understandable face region
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descriptors around local, interpretable (meaningful) and distinctive face image patches and
call them Locally Interpretable Boosted Features (LIBF).
LIBFs can be either manually designed or ideally be learned in an unsupervised setup. Thus
we can either directly predict the decision of an unexplainable face recognition system
(similar to a black-box explanation approach) or estimate at least its probability for success
in order to understand the reasons for the unexplainable system’s decision. This basic idea
is illustrated in see Figure 3.1a.

The left side of Figure 3.1a depicts schematically the workflow of a standard unexplainable
reference pipeline defined and to be explained. In particular an input image containing
persons (top left) is processed by a face detector (e.g. Retina-Face) to cut out and normalise
a face image. On this face-image descriptive features are extracted using non-explainable
approaches such as ArcFace or MagFace. Finally a classifier is applied, depending on the
face analysis task to solve. This can be e.g. a fully-connected neural network, or also a
simple cosine similarity distance with thresholding or a nearest-neighbour classifier.

The right side of Figure 3.1a shows schematically our proposed approach starting with the
extraction of patches around face landmarks (e.g. eyes, nose, corners of the mouth) using
the framework of e.g. Bulat et al. (Bulat 2017), and several other selected and significant
patches relative to them (upper red circle) using a specific heuristic described in more detail
later. To describe the content of those local patches we can either use hand-crafted but local
features such as blurriness-levels or colour histograms. More promising is to use specialised
local features which can be e.g. learned using self-supervised techniques as also described
below in more detail.
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Figure 3.1a: Principle Principle of the proposed LIBF approach. Local, interpretable features, calculated on
regions around distinctive points (anchor points) in the face (thus meaningful and understandable for humans)
are used to train an inherently explainable approach and estimate probability for correct decisions of the
unexplainable pipeline. The dotted arrow indicates a potential extension for loosely coupling our approach to the
reference pipeline and avoiding drifting.

Finally, such features can then be used to train an inherently explainable approach (e.g.
decision tree or similar approaches like the explainable boosting machine mentioned in
Section 2.7) in parallel to the reference pipeline providing similar recognition results or
estimating the probability for correct decisions of the native pipeline. Please note that this
approach is similar to already presented black-box end-to-end approaches such as RISE
(see Section 2.8), but as a main difference to them we will not work on original input data
(face images) but on (semi-) local face and image features, which can be easily interpreted
by humans. In addition, our approach does not require generating variations of the input
image.

Heuristic selection of meaningful patch locations

For human understandability of face recognition processes it is a good idea to relate
explanations to distinctive regions in the face which could easily be identified and interpreted
by humans. In our approach we select the five natural anchor points, namely eyes, nose and
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corners of the mouth as base patches. They could be detected by e.g. the algorithm of Bulat
(as mentioned above) or any other method for facial landmark detection.
In order to capture other potentially important parts of the face, we heuristically selected six
additional patches - namely (left and right) forehead, cheek and chin. The position and size
of the additional patches are determined based on the position of the base patches (such as
distance between left eye - right eye or mouth - nose) to be independent of resolution, scale
and rotation of the face. Hence in total 11 patches are extracted from a face image. Figure
3.1b shows the principle as well as some examples of extracted face patches.

Figure 3.1b: Illustration of the heuristic patch selection principle and some examples of meaningful patches
extracted.

Moreover, in the case of extreme rotation around the vertical axis (i.e. side views) some of
the patches extracted could be located outside the face or are even invisible. The same is
true for images with very low resolution, as we require a minimum patch size of 20x20 pixels
for taking an image as a candidate in the training stage. Thus we added a simple heuristic to
identify such patches, and store the binary information for the selection of patches to use for
the training of the patch embedding and the verification-feature creation. Figure 3.1c shows
some examples for the latter case.
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Figure 3.1c: Examples for patches faces with extreme rotation, low resolution and bad allocation causing out of
image cropping and align errors.

Self-supervised learning of feasible patch embedding

The features describing the individual face patches should be highly distinctive but also as
compact as possible to allow for easy interpretation and understanding. Thus it is not
feasible
to use pre-trained image features from other tasks as e.g. object detection. Moreover it is
necessary to specifically tune the representation to the nature of the patches themselves
and
coevally minimise the number of dimensions. In order to avoid the need for annotated and
labelled data, we propose to use a self-supervised technique for generating such
embeddings.
In particular we follow the approach of Grill et al. (Grill 2020) , where the authors use a
two-stream competitive neural network architecture (Siamese network) to learn an optimal
embedding using various augmented views of single images. The network iteratively
bootstraps the output of two competitive networks that interact and learn from each other. A
stop-gradient module avoids the collapsing of the networks to trivial solutions. The main
advantage is that the method achieves state-of-the-art results as proven for e.g. the
evaluation protocol of ImageNet – but without using any negative image pairs – which makes
the approach best suited for our purposes. In our approach we set the dimensionality of the
latent feature
vector (the embedding) to d = 16. This selection is inspired by the fact that a dimensionality
of face features of 10 already enables useful reconstruction (Celis 2019). Thus we obtain a
16-dimensional embedding for each of the patch types (e.g. left-mouth corner, chin etc.).
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3.1.3. Performance Evaluations
Performance evaluations have been continuously conducted during the development of our
methods. Thus we make use of the evaluation metrics and protocols already documented on
deliverable 2.2. In particular, we use the publicly available IARPA Janus Benchmark-B
(IJB-B) and Benchmark-C (IJBC) datasets as main image sources as well as their
corresponding verification protocols to allow for fair comparison. Note, that especially the
IJB-C dataset is a de facto standard for unconstrained face recognition.

In the following performance evaluations reported we focus on the IARPA Janus
Benchmark-C face challenge baseline 1:1 Verification protocol as this is actually one of the
most recent and most comprehensive verification protocols. The verification process is a
two-stage one and consists of an embedding pre-calculation step generating all the face
image patches on individual locations followed by the verification procedure. The first one is
the most time-consuming step conducted for each patch separately, and lasts between 7
and 29 hours (per patch-type) depending on the patch-type on an Intel Xeon E5-2640 CPU
(2,4GHz).

Evaluation of verification performance using the learned self-supervised
embeddings

In order to check the feasibility of the self-supervised embeddings learned, we applied the
learned patch representations to a face verification task according to the IJB-x verification
protocols. Both the IJB-B and IJB-C verification protocol consist of dedicated images used
for the verification task as a total 1:1 evaluation would be too complex and needs too much
time.
Moreover the protocol defines a dedicated set of face images from a single person to build a
so-called template representation of a face. This is simply done by averaging all the feature
vectors from the face image set. For generating the query templates procedure we follow the
same pipeline for patch-extraction as described before and obtain a 16-dimensional feature
vector for each patch through the embedding learned.
The IJB-x verification protocol then simply uses the cosine-similarity distance between query
and template features to calculate a matching score. Following the IJB-x 1:1 Verification
protocol we present the results as detection error tradeoff curves (DET) on false-match and
non-false-match rates (FMR, NFMR).
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Figure 3.1d: DET curves according to the IJB-B 1:1 Verification protocol using the learned embeddings trained
on IJBB for each individual type of face-patches.

Figure 3.1e: DET curves according to the IJB-C 1:1 Verification protocol using the learned embeddings trained
on IJBB for each individual type of face-patches.
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The DET curves are calculated for each patch-type separately. The Figures 3.1d and e (for
the IJB-B and IJB-C dataset respectively) clearly show, that the performance of the
verification approach using a single patch-feature individually is clearly above randomness
(which would be a diagonal line) and thus the embeddings calculated are feasible.

In order to check, if there is a dependency of the trained embedding on the verification
performance, we also trained the embedded representations on IJBC dataset and obtained
similar results as shown in the Figures 3.1f and g.

Figure 3.1f: DET curves according to the IJB-B 1:1 Verification protocol using the learned embeddings trained on
IJBC for each individual type of face-patches

In order to allow an estimation of the evaluation consistency among the evaluations and gain
more insight regarding the importance and performance of the individual
patch-representations (patches) we re-arranged the results in a table, colour-coded the
individual patches and ranked the patch-locations in decreasing AUC order (note, that the
smallest AUC value is best in DET-curves) as shown in Table 3.1

Taking into account the presented results, we draw the following main conclusions:

● The BYOl-Trainings for IJBB and IJBC provide similar results independent from the
selection of training/evaluation set (IJBx train / IJBx test).

● The ranking of the patches is consistent over all evaluations. The selection of
anchors and forehead patches are best and cheek, chins and eyes are the worst
selections regarding verification performance.

● As expected the combination of patches outperform single patch verification alone.
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Table 3.1: Ranked and colour-coded AUC values for various embedding types (IJBB and IJBC embeddings) and
patch locations.

Figure 3.1g: DET curves according to the IJB-C 1:1 Verification protocol using the learned embeddings trained
on IJBC for each individual type of face-patches.
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Explanations gained using EBM in the verification scenario

In this paragraph we present first insights from applying the EBM to the features obtained
through learning the embeddings described in the previous section. In particular, we use the
implementation of EBM contained in Microsoft’s InterpretML framework (see
https://github.com/interpretml/interpret) and follow the feature extraction scheme described
above. In addition to the 16-dimensional feature vector obtained by applying the learned
embedding to the face patches, we use the binary information on visibility of face patches
(caused by extreme vertical rotation) as an additional feature. Thus we end up with an 11x17
dimensional description for faces and a final normalisation step is applied to query and
template features. We empirically found that per-patch normalisation of the feature vectors
(normalisation for each group of 17 features for one single patch) provided best results.
In order to train the EBM for a verification task, we have provided both the query and the
template LIBF at the same time. Thus we encode the comparison of the 187-dimensional
LIBFs for query (Lq) and template features (Lt) directly in the feature representation. Such a
verification feature representation (V) can then be directly used to estimate the label (match
or no match) encoded as [0, 1]. We investigated two different encodings, namely

● a simple concatenation or stacking of the query and template LIBFs
(Vc = Lq,1, ..,Lq,187,Lt,1, ..,Lt,187) resulting in a 374 dimensional verification-feature and

● a verification-feature obtained through multiplying the corresponding query and
template LIBF dimensions (Vm = Lq,1 ·Lt,1, ..,Lq,187 ·Lt,187).

For the training it is furthermore important to use a dataset with an approximately equal
number of matching and nonmatching template pairs from the IJB-B dataset. Thus we
reduce the number of pairs to ∼10k samples each, coevally taking care of an almost
balanced distribution of face-samples per person. The training procedure itself is rather fast
using 90% of the 20 cores on an Intel Xeon E5-2640 CPU (2,4GHz).

To gain first global insights on the EBM-classifier trained to mimic a face verification task we
analyse the visualisations of the mean absolute importance scores for various features and
feature-pairs. Figure 3.1h depicts the 15 most important contributions to the decision of the
classifier made for both verification feature encodings. There is obvious prioritisation for
several single feature dimensions and pairwise correlation depending on the type.

Deliverable D4.1 27



Measuring and Improving Explainability for AI-based Face Recognition

Figure 3.1h: Global explanation for the stacked verification features (Vc) on top and multiplied verification
features (Vm) on bottom.

As expected, the EBM correctly identifies dual-feature correlations (we can find only
feature-pairs among the entries) as most important contributions in the case of the stacked
(Vc) verification feature type (top). Even if displaying all the EBM selected feature dimensions
as shown in Figure 3.1i only dual-feature correlations contribute to the overall verification
procedure. The opposite is true for the multiplied (Vm) verification features types (bottom).
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Figure 3.1i: All global explanations for the stacked verification features (Vc) as identified by the EBM. Although
the image is not sharp due to limited resolution, the selection of dual-feature correlations contributing to the
verification process is clearly visible.

Besides the global explanation of the entire classifier trained with the EBM it is also
interesting how individual features of an arbitrary instance contribute to the verification
output. To provide initial insights on that, we exemplarily show some results in Figures 3.1j
and k for the stacked (Vc) and multiplied (Vm) verification feature encodings, respectively.
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Figure 3.1j: Local explanation examples of non-matching, verification features (Vc) on top and matching
verification features on bottom.

In Figure 3.1j one can see that for the stacked verification features (Vc) only feature
combinations provide most important contributions to the final matching decision. In the case
of features from non-matching faces (Figure 3.1j top) the majority of correlated feature pairs
vote for the desired output, while the opposite is true for the matching ones in the graphic
below.

For the multiplied verification features in Figure 3.1k a similar behaviour is observed, but
mostly for single features. It is interesting to see that also some feature combinations provide
contributions. This might indicate some hidden correlation between (neighboured) face
image patches extracted.
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Figure 3.1k: Local explanation examples of non-matching (above) and matching (below) multiplied verification
features (Vm).
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Figure 3.1l: Locally Interpretable Boosted Feature (LIBF) in the context of legal and ethical requirements concerned.
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3.1.4. Legal and Ethical guidelines concerned by the method

The proposed Locally Interpretable Boosted Features (LIBF) method and the explainable
boosting machine subsequently used tackle several legal and ethical obligations required by
the in depth-analysis from deliverables 3.3 and 3.4. To identify and highlight these
dependencies we make use of Figure 3.1l and identify the following wordings as most
relevant and applicable for our method.

● “interpretability”,
● “human-machine interface”,
● “enable users to interpret the system’s output and use it appropriately" and
● “meaningful information about the logic involved" (Case pending)”

Hence we can deduce from the dependencies in Figure 3.1l, that LIBFs used as an aid for
professional users can be treated as a “high risk system” causing compliance with several
articles of the CFR and ECHR as well as articles 13-15 of the AI-Act and article 12, 13, 15
and 22 of the GDPR.

In addition our method can be linked against the explicit compliance efforts regarding AI-Act
and GDPR elaborated and reported in chapter 4.4.1 and 4.4.2 respectively. Thus our method
is especially relevant for the numbered topics

● A-13-1, A-15-1, A-13-2 and A14-3 for AI-Act related recommendations - and
● G-15-1, G-14-1, G-14-2 for GDPR related recommendations.

3.1.5. Summary, conclusion and outlook
As a conclusion of this chapter we state that we proposed a novel, general black-box
explanation method for face recognition tasks and Locally Interpretable Boosted Features
(LIBF). The method provides a different way for explaining most important regions in face
images for the recognition task, but taking into account human understandability and thus
providing the ability to apply countermeasures in the case of failures. To prove the feasibility
of unlabelled, self-supervised face embeddings learned for specific regions, we verified that
the approach already works in principle. Finally, we have shown first results regarding the
suitability of a recent high performance explanation technique termed explainable boosting
machine for uncovering local feature importance using our proposed features.

Future work will be the application of our approach to a face-identification scenario and
comparison to other state-of-the art face recognition pipelines such as ArcFace or MagFace.
Moreover we will apply the approach to the use case of “Video-Archive content search and
documentation”. Therefore we plan to optimise the parameters and provide more in-depth
results working on this much more demanding dataset. The potential reduction of embedded
layer dimensions is also a hot topic of interest we plan to investigate in upcoming research.
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Finally, and as a closing remark for this chapter, we want to mention that the method
proposed can also be seen as a generic approach to address explainability tasks for other
domains. Thus it will help to avoid (classical) pitfalls such as uncovering the presence of
non-task-related image features (e.g. specific background for a certain class) feigning
perfect recognition/classification performance.

3.2. Improving Face Verification Explainability
using Spatially-Biassed Similarity Metrics and
Training Loss Functions

3.2.1. Introduction

Convolutional neural networks (CNNs) have achieved top performance for many computer
vision tasks, notably face recognition. However, there is still a lack of effective processes to
explain the complex decision-making process of deep learning (DL)-based solutions,
especially due to their large, non-linear components. This situation is largely known as the
“black box” approach, basically recognizing that the performance may be excellent but there
is no clear idea how the final result is obtained. This limits the application of this technology,
especially when the decisions have serious implications in real-world applications, e.g.
access to critical infra-structures, gender or race discrimination, etc.; in fact, unexplainable
false-positive results may lead to serious security and privacy issues. In this context, it is
crucial to improve the transparency of the decision-making process for DL-based face
recognition solutions which are the target of the XAIFace project. Thus, with the help of
explainable AI, it is possible to understand and trust more the DL-based models results.

3.2.2. Description

It is well-known that DL-based face recognition results are largely impacted both by the loss
function at training time as well as the features/description similarity metric at decision time.
It is also intuitive that the similarity between two faces is not equally determined by all parts
of the corresponding faces, notably face landmarks may be more relevant.

In the selected XAIFace reference face recognition pipelines, notably based on ArcFace and
MagFace, two images are said to be from the same person simply if the adopted similarity
metric is larger than a specific threshold value. However, this standard procedure does not
help in interpreting and explaining to humans the relevance and impact of the
high-dimensional features involved in the recognition process.

In this context, the plan for this novel explainable DL-based face recognition solution is to
include new similarity metrics and training loss functions that consider the different impact of
the various spatial regions in a face image, thus offering a local, spatially-biased approach.
Naturally, the face landmarks may have a special impact in face recognition, which is not
even always the same among them, e.g. eyes, nose and mouth. The target is that this novel
solution provides quantitative and qualitative reasons to explain why two face images are
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from the same person or not. For example, if two face images are associated with the same
person, the proposed solution may identify which parts of the face were more impactful and
representative, e.g. by providing local similarity values. In this spatially-biassed process, it is
also possible to include a spatial attention model, which should replicate the attention that
humans dedicate to different regions when they recognize faces.

However, explainability capabilities, notably involving new similarity metrics and training loss
functions, should not come at an unreasonable price in terms of recognition performance,
notably for the verification protocol. Therefore, a novel explainable DL-based face
recognition solution must offer an appropriate balance between verification accuracy and
human interpretability, e.g. through some meaningful spatial maps which offer spatial
explanations for the final decisions. By using the local similarities with different weights, the
proposed, improved solution has the potential to become more robust than the original one
for partially occluded faces.

Since it is common to perform face recognition on images which have suffered image
compression, the recognition performance of the proposed explainable DL-based face
recognition solution will also be studied for decoded images, not only using the so-called
conventional image codecs, e.g. JPEG, JPEG 2000, JPEG XL, but also the recently
emerged DL-based image codecs, notably those presented in the context of the JPEG AI
project. In this context, it will also be possible to explain and assess the impact of coding the
various face landmarks with different qualities after face and landmarks detection, if image
encoders including that facility are available.

3.2.3. Performance evaluation
The novel similarity metrics and training loss functions will be developed and assessed using
the two XAIFace reference face recognition pipelines as baseline solutions and anchors
(notably ArcFace and MagFace) under the recommended verification protocol.

3.3. Similarity-based RISE Algorithm for
Explainable Face Recognition System

3.3.1. Introduction
Face recognition has been a crucial task in recent years and the recognition systems have
been widely deployed to various applications, such as smartphones or surveillance. With the
development of deep convolutional neural networks (DCNN) and an increasingly large
amount of available dataset, the methods developed have shown remarkable results on face
recognition tasks with DCNN-based approaches. However, beyond the exceptional
performance, deep face recognition models trained with large scale datasets were usually
treated as "black-boxes", because the model designers can only have an understanding of
the dataset or loss functions for training, but very limited understanding of the learned model
itself. The deep learning-based recognition systems need more explainability and
transparency so that people can truly trust the results they predict or understand the possible
failures from them. Visual saliency algorithms have been widely employed to explain the
decisions of deep learning systems acting on vision tasks. This section introduces a new
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model-agnostic explanation method based on visual saliency map for face recognition
models.

3.3.2. Description
Explainable face recognition is a problem of explaining the matches returned by a
recognition system in order to provide insight into why a probe face image can be matched
with one identity over another. A saliency map-based explainable face recognition method
should be able to generate heat maps for critical regions of the input image and interpret the
decision of the recognition model. Under this context, we propose a new model-agnostic
explanation method for face recognition systems.

A popular group of methods that produce saliency explanations without accessing the
intrinsic network architecture mainly performs random perturbation on input image, e.g.
noise, occlusion, etc, and determines the importance region by observing the impact of such
perturbation on the final output predictions. Despite being useful in principle, existing
explainability tools for other image understanding tasks cannot be directly applied to the face
recognition task. For example, the Randomized Input Sampling for Explanation (RISE)
method explains a classification model by leveraging the categorical output probability of the
classifier as the weight to aggregate the final saliency map. However, the decision-making
process of a face recognition system mainly involves deep face representation extraction
and similarity calculation between at least two images. To address this issue, we propose a
Similarity-based RISE algorithm (S-RISE) that leverages the similarity score as weights for
the masks and provides explanation saliency maps without accessing the internal
architecture or gradients of the face recognition system.

Figure 3.3a depicts an overview of the proposed S-RISE algorithm. In general, given a pair
of images {imgA, imgB}, a mask generator will first randomly produce a fixed number of
masks. For each mask Mi, it will be applied to the input image, e.g. imgA. The masked imgA
and unmasked imgB are then fed into the face recognition model respectively to capture the
deep face representation. Afterward, the cosine similarity is computed as the weight of the
corresponding mask. After iterating all the masks, the final saliency map SA for imgA is the
weighted combination of the generated masks.
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Figure 3.3a:Workflow of the S-RISE explanation method

We interpret the decision-making process of a face recognition model by inputting a triple of
probe, mate, and non-mate images. In this context, a well-developed explanation method
first should be able to generate saliency maps that highlight the critical regions that are
similar to the FR model. Secondly, it should explain why the FR model believes the
probe-mate pair is a better matching than the probe-nonmate pair. In practice, the
explanation method is applied to the ArcFace face recognition system (one of the reference
pipelines to work on agreed in this project). The saliency maps for the probe-mate pair and
probe-nonmate pair are calculated separately according to the steps above and re-weighted
according to the similarity differences between them.

3.3.3. Visual results of generated saliency maps
This section presents the visual results of the saliency map generated by our proposed
S-RISE algorithm. As shown in Figure 3.3b, the produced saliency map properly highlights
the regions between the matching pairs that the FR model believes are very similar. As for
the probe and nonmate pairs, the heatmaps also represent similar regions but they are much
shallower, indicating low similarities between them, which explains why the model believes
they are not from the same subject.

To further validate the effectiveness of the proposed explainability model, an additional test
has been done with self-occluded faces. Some studies have shown that the current deep
face recognition model is capable of identifying partially occluded faces despite lower
confidence. In this case, an ideal explanation method should provide low saliency values for
occluded pixels while high values for other similar regions. In this experiment, the
non-matching face in a triplet is replaced by an occluded image from the same subject as
the probe face. As presented in Figure 3.3c, the S-RISE algorithm explains that the FR
model manages to verify them through the eye regions when images are occluded by facial
masks, and through mouth and nose areas when masked by sunglasses.
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Figure 3.3b: Saliency map explanations for the FR model’s prediction on the matching (left) and
non-matching (right) image pairs.

Figure 3.3c: Saliency map explanations for the predictions of the FR model on partially-occluded faces
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3.3.4. Performance evaluation
This section presents a new evaluation approach to systematically validate the reliability and
measure the performance of the general saliency-based EXplainability Face Recognition
(XFR) method. The conventional "Deletion" and "Insertion" evaluation metrics are adapted
and improved to better fit the explainable face recognition framework. The main insight is
that the explanation saliency map is expected to precisely highlight the most important
regions of the face with the smallest number of pixels for the face recognition model to make
a correct decision.
In general, the Deletion and Insertion metrics measure how fast the similarity between two
faces drops/rises to a threshold value after removing/adding saliency pixels from them. More
specifically, the deletion process starts with original images, and the pixels with the highest
saliency values are sequentially removed and replaced with a constant value. After removing
each pixel, the similarity score is recalculated until it is lower than a predefined threshold. On
the contrary, the insertion process starts with the constant value, and the most critical pixels
in the image sorted by the saliency map are added to the plain image. The similarity score is
recalculated each time after adding one pixel until it is larger than the threshold. The number
of pixels deleted from or added to the image is accumulated until the recognition model
changes the decision. Overall, the deletion and insertion metrics are defined as

and . In practice, removing pixels from an image alters the original#𝑅𝑒𝑚𝑜𝑣𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠
#𝐴𝑙𝑙 𝑃𝑖𝑥𝑒𝑙𝑠

#𝐴𝑑𝑑𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠
#𝐴𝑙𝑙 𝑃𝑖𝑥𝑒𝑙𝑠

distribution and can eventually affect recognition results. Hence, the constant value above is
set as the mean value of the specific image.

Table 3.3: Quantitative evaluation of saliency maps using proposed Deletion and Insertion metrics

Methods Iterations Deletion Insertion Average

S-RISE

10 0.4466 0.3582 0.4024

100 0.2617 0.1983 0.2300

500 0.2071 0.1459 0.1765

1000 0.2077 0.1384 0.1731

Figure 3.3d: Saliency map generated by S-RISE algorithm with different iteration configurations
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Table 3.3 shows the quantitative evaluation for the proposed S-RISE algorithm under
different configurations in terms of iterations. The metrics show that a small number of
iterations results in poor explanation performance. On the other hand, the metrics gradually
converge at around 1000 iterations, which corresponds to stable and accurate saliency
maps. Figure 3.3d further validates the conclusion drawn by quantitative evaluation results.

Deliverable D4.1 40



Measuring and Improving Explainability for AI-based Face Recognition

Figure 3.3e: Similarity-based RISE algorithm in the context of legal and ethical requirements concerned.
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3.3.5. Legal and ethical guidelines concerned by the S-RISE
method

The proposed Similarity-based RISE method tackles several legal and ethical obligations
required by the in depth-analysis from Deliverable 3.3 and 3.4. To identify and highlight these
dependencies, we make use of the overview graphics shown in Figure 3.3e and identify the
following wordings as the most relevant and applicable for our method.

● Interpretability
● Human-machine interface
● Enable users to interpret the system's output and use it appropriately
● Meaningful information about the logic involved

Hence, we can deduce from the dependencies in Figure 3.3e that the S-RISE method used
as an aid for professional users can be treated as a “high risk system” causing compliance
with several articles of the CFR and ECHR as well as articles 13-15 of the AI-Act and article
12, 13, 15 and 22 of the GDPR.

In addition, our method can be linked against the explicit compliance efforts regarding AI-Act
and GDPR elaborated and reported in chapter 4.4.1 and 4.4.2 respectively. Thus our method
is especially relevant for the following numbered topics.

● A-13-1, A-15-1, A-13-2 and A14-3 for AI-Act related recommendations
● G-15-1, G-14-1, G-14-2 for GDPR related recommendations.

3.4. Demographic Information Disentangling
3.4.1. Introduction

Face recognition (FR) is currently predominantly based on convolutional neural networks
(CNNs). CNNs are used to extract face representations that can be used for several tasks,
including identity recognition. Although CNNs are intended to generate representations
encoding only the identity information, recent studies have shown that information about
soft-biometric traits, including gender, age, and other demographics, is also encoded in
these representations (Dantcheva et al. 2015) (Dhar et al. 2020) (Nagpal et al. 2019) (Parde
et al. 2017). Soft biometrics are attributes that are not necessarily unique to an individual but
can be used alone or in conjunction with primary biometric traits for a variety of applications.
However, since these attributes can be extracted from the computed face representations
and may potentially be misused, they represent a considerable privacy risk.
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3.4.2. Description
For the so-called black-box FR systems, it is not clear how face features such as gender,
age, and ethnicity are encoded in the overall face description, namely the face template.
Several works have addressed the problem of masking or altering the face representation in
order to conceal the soft-biometric traits (gender, ethnicity, age). There are two approaches:
image-level techniques operate by suppressing the soft-biometric information in face images
so that machine-learning based models, such as CNN, fail to infer it (Mirjalili et al. 2019)
(Rozsa et al. 2019). However, they rely on pre-trained classifiers to learn the perturbation to
be applied to the image and thus do not generalise well for other classifiers. Template-level
approaches try to suppress the soft-biometric information from the more compact face
representation encoded in face templates. Existing techniques from this group were shown
to generalise well to arbitrary attribute classifiers (Terhörst et al. 2019).

In XAIface, instead of masking or altering the gender, age, or ethnicity information, we plan
to develop techniques for disentangling demographic information from the overall face
representation in order to understand the impact of such traits on face recognition but also to
develop demographic-free face recognition. The latter will also indirectly address fairness
and non-discrimination issues by following the idea of de-biasing during the training, as the
only information used by the FR pipeline will be related to identity and not to other soft
biometric traits.

Figure 3.4a: Overall architecture of the PFRNet autoencoder.

An autoencoder will be used to reduce the dimensionality of a facial biometric template
(feature vector) and at the same time to separate identity information from demographic
information. To do this, specific loss functions will be used to drive the separation of the
information into two smaller vectors. This work is currently under development and will build
upon the method presented in (Bortolato et al. 2020), where an autoencoder, namely
PFRnet, separates the information contained in a FR feature vector into two sub-vectors that
encode the identity representation and the demographic information. The architecture of
PFRNet is illustrated in Figure 3.4a. PFRNet consists of a two-path encoder E and a
single-path decoder D. E comprises two separate encoders Eind and Edep. The first encoder
Eind maps the face representation x (commonly generated by a CNN face recognition model,
such as FaceNet, VGGFace, or VGGFace2) into a latent vector zind, which preserves identity
cues, while greatly reducing the amount of information related to selected demographic
attributes, such as gender. Thus, the latent representations zind can ideally be used in
biometric systems for identity recognition without privacy-related concerns regarding the
misuse of demographic information. The second encoder Edep maps the original face
representation x into a latent vector zdep that encodes demographic attributes only. The
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complete latent representation of x generated by the encoder E is a concatenation of the
latent representations zind and zdep, i.e., z = zind⊕zdep. This latent representation can in
principle be reconstructed by the decoder function D : z → x. In their paper, Bortolato et al.
train PFRNet to suppress gender information, but in general the same concept can also be
extended to other demographic attributes.

The properties of the subvectors zind and zdep discussed above follow from the learning
objective devised for PFRNet. The model makes use of three different loss functions. The
first ensures a good reconstruction of the input data (reconstruction loss), the second
suppresses gender information in zind and the third loss forces the distributions of zdep for
male and female subjects to be as different as possible. The second and third loss functions
require attribute labels for the training data, while the first relies on self-supervision.

In XAIface the FR feature vectors will be extracted by the selected FR pipelines (ArcFace
and MagFace) and ways to improve the soft-biometric disentanglement as well as to extract
other types of demographic beyond gender will be investigated.

3.4.3. Performance Evaluation
Performance evaluation will be carried out by analysing and measuring the impact of
demographics on face recognition in terms of loss/gain in performance, both on the whole
dataset and on subsets of specific classes. Face recognition performances will be assessed
using the metrics recommended in the ISO/IEC 19795-1, that is false match rate (FMR),
false non-match rate (FNMR) for verification (one-to-one), and false-negative
identification-error rate and false-positive identification-error rate for identification
(one-to-many), as well as with graphical illustrations through the detection-error tradeoff
(DET) plot.
Along with classical performance metrics, ad-hoc metrics will be adopted for specific tasks.
For example, for assessing the efficiency of the disentangling method PRFNet (Bortolato et
al. 2020), the authors propose the privacy-gain identity-loss coefficient (PIC). This metrics
combines the performances for the following two tasks:

- for gender recognition, the fraction of incorrectly classified images (fic), and
- for face recognition, the equal error rates (eer), computed in face verification

experiments.

𝑃𝐼𝐶 =  𝑓𝑖𝑐' − 𝑓𝑖𝑐
𝑓𝑖𝑐  −  𝑒𝑒𝑟' − 𝑒𝑒𝑟

𝑒𝑒𝑟

Where fic’ and eer’ are computed from the attribute suppressed representations, whereas
the errors fic and eer are computed from the original (unmodified) face feature vectors.
Positive PIC values imply that the privacy gain is higher than the potential loss in face
recognition performance and higher values indicate better performances.

3.4.4. Legal and Ethical Guidelines Concerned by the Method
Demographic information disentangling is concerned with several legal and ethical
obligations required by the in depth-analysis from Deliverables 3.3 and 3.4. Such
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dependencies are illustrated in the graph shown in Figure 3.4b and identify the following
wordings as the most relevant and applicable for our method to be developed:

● “Measures envisaged to address the risks”: as this approach aims at separating the
identity information from other demographic information so that only the strictly
needed information for a specific task is used, preventing the revealing of additional
unnecessary information and in a way protect the user's privacy as much as possible
while still allowing the recognition system to work efficiently.

● “Meaningful information about the logic involved”: this approach will also contribute in
making the system’s logic more understandable as it will allow the user to better
understand what part of the information is used.

We can thus conclude that from the dependencies in Figure 3.4b, the demographic
information disentangling method is interested by articles 15 and 22 of the GDPR.
Finally, this method is especially relevant for the following numbered topics:

● A-13-2, A-14-1, and A-14-4 for AI-Act related recommendations;
● G-15-1 for GDPR related recommendations.
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Figure 3.4b: Demographic Information Disentangling and Explainable Soft Biometrics Estimation in the context of legal and ethical requirements concerned.
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3.5. Explainable Soft Biometrics Estimation
3.5.1. Introduction

Human face images encode different types of biometric information. Soft biometrics such as
gender, height, and weight do not have the capacity to differentiate between two different
identities, however they can be useful to improve the quality of different systems. Among
those, weight is also an indicator of both physical appearance and health conditions and
unlike gender and height, body weight changes during a person's adult life and needs to be
periodically measured. Conventional weight measurement techniques require the
cooperation of the subject to be measured, which might not be possible during medical
emergencies, video surveillance for criminal pursuit or due to different patient disabilities.
When non-cooperative scenarios occur, visual estimation of the weight of the patient by a
health professional is preferred but such estimations might not always be accurate.

Furthermore, face images are a rich source of personal and sensitive data that can be used
to support a wide range of applications spanning from biometric recognition to user profiling.
It is therefore essential that face images are adequately protected so that they cannot be
misused ensuring their use exclusively for the target application. Individuals should be able
to have access to privacy preserving systems that allow them to select the attributes to be
kept and the attributes to be protected or suppressed from their face. Being able to
understand which face image factors are important for a weight estimation model in
opposition to a face recognition system, is a first step to performing weight anonymization,
avoiding targeted advertisement in social networks that might lead to large-scale eating
disorders.

3.5.2. Description

Nowadays, deep learning technologies provide new solutions to obtain end-to-end learning
models that gain knowledge and insights from complex, high-dimensional biomedical data.
However, the general user might be still sceptical when facing black-box approaches in
applications where model interpretability is a concern. Understanding the decision making of
a predictor is crucial when actions are taken in the medical domain. Assessing trust in a
model cannot be achieved only through accuracy metrics, a trustworthy model should be
evaluated using interpretability techniques.

In this context, we aim to increase the trust of the user in soft biometrics estimation models,
especially for one of the most discriminative as it is the weight. We intend to do it by
complementing the prediction delivered by the deep learning network with a visualisation of
the most contributive facial regions that lead to it. To this end, we explore two
model-agnostic explainability techniques, SHAP and LIME. The interpretability techniques do
not assess the validity of the result, instead, they give complementary information on which
images areas were most significant for the prediction.
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As a result of the regions highlighted by the interpretability approaches, we focus on
assessing the impact of different occlusion factors on the weight estimation model. We
explore the impact that hairstyle, and more particularly facial hair, has in the final weight
prediction. We also evaluate different face detection and cropping techniques to assess
whether different detection methods will consider more of the most meaningful areas
highlighted by the interpretability approaches. As suggested by the explainability techniques,
the occlusion or omission of those areas will lead to less accurate predictions, causing a
misestimation of the soft biometric (in this case the weight) thus misleading the face
recognition system. After those experiments, we are able to affirm that the optimal image
pre-processing of image faces for weight estimation must take into account factors such as
hair occlusions and the shape and size of face cropping bounding boxes in a different
manner as usually done for face recognition tasks. Finally, we show how the most relevant
face regions for estimating the weight differ by gender thus validating a gender-based
model selection.

3.5.3. Performance evaluation
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Figure 3.5a: Explainability approaches applied to the VIP_attribute dataset.

In Figure 3.5a we present representations of the output of LIME (b) and SHAP (c) when
those explainability techniques are applied to the face images.
In (b), the highlighted green areas represent the image regions contributing to an increase of
the weight and opposite to them, the purple ones constitute the portions decreasing the
weight value. In (c), the red dots represent meaningful players for the game outcome. Nearly
all the highlighted pixels for both methods lay in the face skin areas of the image, excluding
regions such as background or eye pupil, reinforcing our model trust since meaningful parts
of the image were taken into account.
We made a count of the most returned face areas by LIME across the test set and presented
them in Figure 3.5a (a) for the male and female subjects. We observed how in all cases, the
cheek area was the most highlighted feature. We also noticed how different areas were
highlighted for males and females, as is the case of the jaw for women confirming that the
model focuses on different face regions depending on gender.
Finally, we also counted the times that a non facial region was highlighted. The background
was not often considered relevant information while the hair areas were wrongly taken into
account in more cases.

Figure 3.5b: MAE in kg of the VIP_attribute test set for various face detectors and cropping margins.

While assessing trust in the predictions through LIME, we discover that significant regions
for our weight estimation model such as the face contour (forehead, cheeks and jaw) are
usually excluded from face cropping algorithms since eyes contain the most meaningful
information for face recognition. We evaluated whether different croppings, specially the
ones considering larger face areas, will lead to a more accurate prediction as suggested by
the explainability approaches. In our experiment, we have trained and tested our network for
4 different face cropping methods: Viola-Jones, Multi-Cascade CNN (MTCNN), the dlib
python package and a customised cropping. We defined our face cropping by considering
the highest, lowest, and furthest at the left and furthest at the right facial landmarks
computed by the dlib landmark detector. The results presented in Figure 3.5b, represent the
Mean ABsolute Value (MAE) (y-axis) for different cropping margins (x-axis). It also highlights
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the benefit of an increased margin, specifically of 0.1 (10% increase of the original bounding
box), specially for the rectangular face croppings (MTCNN and customised) whose output is
more adapted to the face shape. Nevertheless, large croppings include a high amount of hair
and background regions increasing the network's MAE.

Hairstyle # of subjects MAE MAPE

Bold - Short Bold 11 11.32 12.98

Short 96 8.73 11.12

Medium 26 5.47 8.00

Long - Long volume 72 6.12 8.92

Facial hair

Clean 136 7.40 10.17

Moustache - Goatee 11 7.47 8.84

Beard 47 8.30 10.16

Fringe 11 6.10 9.28

Table 3.5a: MAE in kg of the VIP_attribute test set for various face detectors and cropping margins.

Another occlusion factor when considering a face image is hair. LIME highlighted in some
cases hair areas as relevant as those can be present above the forehead and cheeks. We
extended the annotation of the VIP_attribute database by adding for every subject
annotations of their hairstyle, presence and type of facial hair and presence of glasses thus
making possible further studies of those categories. Table 3.5a presents the MAE and Mean
Absolute Percentage Error (MAPE) per category. Some categories such as "Bold-Short bold"
are underrepresented so the high values can be due to the presence of outliers. But in the
case of facial hair, we can observe how the presence of fringe as an occlusion is not as
meaningful for the prediction as the presence of a beard which increases the error by more
than 2 kg on average.

3.5.4. Legal and ethical guidelines concerned by the method
Explainable Soft Biometrics Estimation is concerned with several legal and ethical
obligations required by the in depth-analysis from Deliverables 3.3 and 3.4. Such
dependencies are illustrated in the graph shown in Figure 3.4b and identify the following
wordings as the most relevant and applicable for our method:

● “enable users to interpret the system’s output and use it appropriately";
● “interpretability”;
● “human-machine interface”;
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● “meaningful information about the logic involved".

As illustrated by the dependencies in Figure 3.4b, this method provides sensible information
to be used as an aid for professional users and as such must be considered a “high risk
system” causing compliance with several articles of the CFR and ECHR as well as articles
13-15 of the AI-Act and article 12, 13, 15 and 22 of the GDPR.
Finally, this method is especially relevant for the following numbered topics:

● A-13-1, A-15-1, A-13-2 and A14-3 for AI-Act related recommendations;
● G-15-1, G-14-1, G-14-2 for GDPR related recommendations.

3.6 Face Verification Explainability using Vision
Transformer and EBM

3.6.1. Introduction

Modern deep-learning solutions often rely on the usage of transformers, also for computer
vision tasks. In particular, the Vision Transformer (ViT) attains excellent results when
compared to state-of-the-art convolutional networks, while requiring fewer computational
resources for training (Dosovitskiy et al. 2021). The ViT splits an image into fixed-size
patches, linearly embed each of them, add position embeddings, and feed the resulting
sequence of vectors to a standard transformer encoder (Vaswani et al. 2017). The resulting
embeddings can then be used for classification. Additionally, the ViT includes a series of
attention heads, which already provide a way to visualise the most relevant input image
regions that contribute to compute the embeddings describing the input image. In other
words, the basic ViT already provides some degree of explainability.

ViT has been used for face recognition with simple modifications such as modifying the
tokens generation method to consider overlapping image patches, for better description of
the inter-patch information (Zhong et al. 2021). Using the Attention Rollout tool (Abnar et al.
2020), it is possible to create a heat map highlighting the face regions that contribute most to
creating the embeddings that led to the face recognition decision. Attention rollout tracks the
information propagated from the input layer to the embeddings in the higher layers.

Further developments in terms of explainability when using the Vit have been proposed, to
go beyond attention visualisation. The method proposed in (Chefer et al. 2021) assigns local
relevance scores and propagates them through the layers, handling the problems caused by
the usage of non-positive activation functions, or the frequent use of skip connections in
transformer models.

The work reported here started by exploring face verification explainability using vision
transformers, and then, inspired by the work presented in Section 3.1, combining the usage
of the ViT with the usage of explainable boosting machines (EBM), described in Section 2.7,
to further increase the explainability. The possibility of applying multiple ViTs to different
image patches, in combination with EBM, will also be explored.

3.6.2. Description
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As described above, the idea behind the proposed explainability solution is combining the
intrinsic explainability characteristics of Vision Transformers (ViT) and Explainable Boosting
Machine (EBM), to create a face verification ante-hoc explainability tool.

The overall architecture of the proposed tool is shown in Figure 3.6a. In terms of face
recognition, it can include a single ViT taking as input the complete face image, or include
multiple ViT modules, each to process one of the input face patches. The resulting
embeddings created by the ViT(s) are then passed to the EBM for classification.

Figure 3.6a: Overall architecture of the proposed multiple ViT + EBM explainable face verification solution.

In terms of explainability, the goal is to combine the power of both explainability tools, i.e. ViT
and EBM. For the ViT, the heat maps generated using both the rollout tool (Abnar et al.
2020) and the interpretability based on propagation tool (Chefer et al. 2021) will be
evaluated. Then, since EBM produces relevance scores for each input feature, this will allow
to gain further insights into the complete recognition model’s behaviour. Notice that having
access to the EBM feature relevance scores, this information can be propagated for each
face embedding through the ViT, notably when considering the multiple ViT version, as
illustrated in Figure 3.6b.
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Figure 3.6b: Illustration of explainability architecture with the proposed multiple ViT + EBM face verification
solution.

3.6.3. Performance evaluation

Since this work, inspired by the tool reported in Section 3.1, has started later, only
preliminary results are available at the time of writing.

The initial results regard the explainability power of the selected visualisation tools that can
be used to highlight the regions in the input face image that mostly contribute to the
embeddings generated by the ViT. The examples included in Figure 3.6c show heat maps
highlighting the most relevant regions contributing to the ViT embeddings for a true positive
face verification attempt, using the interpretability based on the propagation tool (denoted as
Chefer tool in the image), and the rollout tool. An example for a true negative face
verification attempt is included in Figure 3.6d.

Figure 3.6c: Heat maps highlighting the most relevant regions contributing to the ViT embeddings computed for
a true positive face verification attempt.
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Figure 3.6d: Heat maps highlighting the most relevant regions contributing to the ViT embeddings computed for
a true negative face verification attempt.

3.6.4. Legal and ethical guidelines concerned by the method

The proposed method for face verification explainability, which in a first step is based on
using the vision Transformer (ViT) and subsequently will be combined with the explainable
boosting machines (EBM) tackle several legal and ethical obligations, required by the in
depth-analysis from deliverables 3.3 and 3.4. To identify and highlight these dependencies
we make use of the wordings:

● “interpretability”,
● “human-machine interface”,
● “enable users to interpret the system’s output and use it appropriately" and
● “meaningful information about the logic involved"

as most relevant and applicable for our method. Hence we assume that the face verification
explainability method using the ViT can be used as an aid for professional users, as this face
recognition systems can be treated as “high risk systems”, causing compliance with several
articles of the CFR and ECHR as well as articles 13-15 of the AI-Act and article 12, 13, 15
and 22 of the GDPR.

In addition the proposed method for face verification explainability can be linked against the
explicit compliance efforts regarding AI-Act and GDPR elaborated and reported in chapter
4.4.1 and 4.4.2 respectively, being especially relevant for:

● AI-Act related recommendations: A-13-1, A-15-1, A-13-2 and A14-3;
● GDPR related recommendations: G-15-1, G-14-1, G-14-2.
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4. Addressing Ethical and Legal issues
4.1. Explainable Approach Design and

Implementation
According to the project proposal, the aim of WP 4 is to research “an approach to explaining
decisions of face recognition systems, approach for explaining decisions of face recognition
systems, building on information contributed from the different influencing factors in the form
of metrics developed in WP2 and data/metadata obtained in WP3. The WP aims to design a
protocol that is applicable to different state-of-the-art face detection and recognition pipelines
that include AI components.”

The work package is separated into 3 tasks:

T4.1 Explainability protocol and methods (M06 – M24: 1; 2, 3, 4, 5)
This task researches and develops components of a face recognition pipeline
producing explanatory information, addressing both the cases of creating
transparent models and post-hoc explanation of black-box models. It also
develops a protocol for implementing them in face recognition systems relying
on AI components.

T4.2 Implementation of explainability approach (M06 – M24: 2; 1, 4, 5)
The protocols and methods developed in T4.1 will be prototypically
implemented for at least two different state of the art face recognition pipelines.
As these pipelines will differ in which components are AI-based (e.g., face
detection, feature extraction) and for which transparent models are used (e.g.,
for matching/classification), as well as in the network architecture (e.g., relying
on common backbones vs. multitask networks for the specific problem), the
implementation of the protocol will be specific for each of the methods. It is also
expected that the trade-off between interpretability and performance will be
different for each of the pipelines.

T4.3 Communicating explanations to users (M12 – M36: 1; 2, 3, 4, 5)
This task analyses how information produced in T4.2 can be visualised or
verbalised to be understandable to users. It will specify approaches to be
integrated into user interfaces to summarise explanations for non-expert users
and enable them to give feedback that is valuable for further training.

Please note, that although the document focuses on T4.1 and T4.2 in particular, the analysis
of ethical and legal aspects is also valid for the part regarding communication to end users,
which will be described in another deliverable (D4.2). In order to avoid duplication of content
and avoid redundancy, we perform the entire analysis in this document and will provide only
a link (reference) and eventually some update notes there.

4.2. Scope
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According to task 4.1, components shall be developed, which would produce additional
explanatory information. Furthermore, the models should be transparent. The analysis in
task 4.3 explores how such information can be visualised or verbalised. The aim is to deliver
understandable information to users and summarise such information for non-expert users.

The major topics which must therefore be addressed within this work package are
explainability and transparency obligations. These issues must be analysed from a legal and
an ethical standpoint. While the legal analysis deals with the status quo of regulation as well
as foreseeable changes in the law, the ethical perspective handles moral issues that may go
beyond current regulation.

It should be noted that explainability and transparency requirements differ depending on the
specific context in which a system is used. Recent EU-legislation has chosen a risk-based
approach to regulation. As a result, the same system may have to adhere to different
standards depending on the level of risk involved. Additionally, national legislation may add
to those requirements. The starting point of the entire analysis are base requirements, which
all or at least most systems must fulfil.

The two main questions , that shall be answered are the following:

A. Is there a legal obligation to be transparent and to provide explanations for
decisions of facial recognition systems?

B. Is there a legal right to obtain explanations of facial recognition systems?

In a preliminary meeting of UNIVIE, the following additional subpoints were identified:

Legal Perspective:

a) What is "explainability” and how is it linked to transparency?
b) What is “transparency”?
c) What transparency obligations does a controller have?
d) To whom does the controller have an obligation to transparency?
e) What rights relating to transparency does a data subject have?
f) What information needs to be communicated to data subjects?
g) How must the information be conveyed to data subjects?
h) Must an AI-based face recognition system be explainable?
i) If so, what information must be conveyed to data subjects?
j) If so, how must the information be conveyed to data subjects?
k) What additional requirements will (probably) be added by future EU-regulation?

Ethical Perspective:

a) What are the ethical requirements concerning transparency and explainability
according to the High-Level Expert Group on AI and similar authorities?
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4.3. Legal Requirements
4.3.1. Explainability & transparency

For the legal analysis, the terms “explainability” and “transparency” must first be explored.
Although classification varies depending on the model and taxonomy, transparency,
alongside interpretability, can be seen as a subcategory of explainability.1 Contrary to this
view, the High-Level Expert Group on Artificial Intelligence categorised explainability as a
subset of transparency.2 In a study prepared for the members and staff of the European
Parliament, “algorithmic transparency” was defined as follows:

“Depending on the type and use of an algorithmic decision system, the desire for
algorithmic transparency may refer to one, or more of the following aspects: code,
logic, model, goals (e.g. optimisation targets), decision variables, or some other
aspect that is considered to provide insight into the way the algorithm performs.
Algorithmic system transparency can be global, seeking insight into the system
behaviour for any kind of input, or local, seeking to explain a specific input - output
relationship.”3

The study describes transparency as a prerequisite for accountability.4 In order to ensure
accountability, a certain amount of information must be provided. The authors of the
document identified seven potential areas of transparency for machine learning systems:4

1. Data: refers to raw data, sources, pre-processing and collection methods;
2. Algorithms: refers to testing outputs against inputs;
3. Goals: refers to relative priorities of respective goals;
4. Outcomes: refers to the outcome of the actual deployment of a system;
5. Compliance: refers to the reports on overall compliance of an operator or

manufacturer;
6. Influence: refers to revealing own interests or third party interests;
7. Usage: refers to what personal data is used.

Furthermore, transparency can be differentiated based on the addressees. A system can be
transparent vis-à-vis everyone, authorities, third-party analysts, researchers5 or data
subjects.

The term “explainability” still eludes legal scripture. Attempts to define the term have been
undertaken6, but no definition has been agreed upon. However, the key points are captured
by a similar debate on the “right to explanation”. Wachter et alia concisely defined the

6 Waltl/Vogl, Explainable artificial intelligence – the new frontier in legal informatics, in
Schweighofer/Kummer/Saarenpää/Schafer (Eds.) Data Protection/Legal Tech – Proceedings of the
21st International Legal Informatics Symposium IRIS 2018 (2018) 117.

5 EPRS, study: A governance framework for algorithmic accountability and transparency (2019) 6.
4 EPRS, study: A governance framework for algorithmic accountability and transparency (2019) 5.
3 EPRS, study: A governance framework for algorithmic accountability and transparency (2019) 4.
2 High-Level Expert Group on AI, Ethics Guidelines for Trustworthy AI (2019) 18.

1 Waltl/Vogl, Explainable artificial intelligence – the new frontier in legal informatics, in
Schweighofer/Kummer/Saarenpää/Schafer (Eds.) Data Protection/Legal Tech – Proceedings of the
21st International Legal Informatics Symposium IRIS 2018 (2018) 118.
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potential points an explanation to an automated decision would have to include7. According
to the authors, the information can be separated into two categories: system functionality
and specific decisions. While system functionality includes information about the logic of the
system, significance, envisaged consequences, decision trees, pre-defined models, criteria
and classification structure, the second category would include more information about the
specific decision such as the rationale, the reasons, individual circumstances (weighting of
features, profile groups etc.).

Wachter et alia further elaborated that explanations can be distinguished by their timing. An
explanation can be ex ante and would therefore be limited to system functionality.
Alternatively, an explanation can be provided ex post and could incorporate both categories.
This structure has since guided the legal debate.8 The definition in the field of ethics will be
addressed in the chapter on ethical requirements.

4.3.2. Current obligations according to the GDPR

General remarks

A key regulation that instituted obligations to transparency was the GDPR9. With the GDPR,
a directive on the processing of data in the context of criminal law was created, which also
contains provisions on transparency.10 Since this context is not a basic use case, the
directive will only be mentioned for the sake of completeness.

The term “transparency” is not defined in the GDPR itself.11 Recital 39 of the GDPR
establishes that transparency is one of the principles of the GDPR and asserts that “it should
be transparent to natural persons that personal data concerning them are collected, used,
consulted or otherwise processed and to what extent the personal data are or will be
processed”.12 From the excerpt one can already derive that transparency according to
the GDPR is mostly an obligation vis-à-vis the data subjects.

12 Rec 39 GDPR.

11 Art 29 Working Party, Guidelines on transparency under Regulation 2016/679 – WP 260 rev.01
(2018) 6.

10 Directive (EU) 2016/680 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data by competent authorities
for the purposes of the prevention, investigation, detection or prosecution of criminal offences or the
execution of criminal penalties, and on the free movement of such data, and repealing Council
Framework Decision 2008/977/JHA.

9 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(referred to as GDPR).

8 For further references: Kim/Routledge, Why a Right to an Explanation of Algorithmic
Decision-Making Should Exist: A Trust-Based Approach (2020), available at:
http://dx.doi.org/10.2139/ssrn.3716519.

7 Wachter/Mittelstadt/Floridi, Why a Right to Explanation of Automated Decision-Making Does Not
Exist in the General Data Protection Regulation, International Data Privacy Law (2017) Vol. 7/2, 76.
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Hence, the main objective of the provisions is to ensure accountability of data controllers and
to empower them to exercise control over their data13.

According to the material scope, the obligations in the GDPR apply to the wholly or partly
automated processing of personal data14. The creation and use of a face recognition system
usually falls within the scope. The problem of which criteria must be fulfilled for data to
constitute personal data will be addressed in another deliverable. It must however be noted
that some relevant exemptions exist for the processing of certain competent authorities
(criminal law) or organisations of the European Union15. This is due to specific regulations in
these sectors.

The main addressee of the provisions of the GDPR is the “controller”. According to Art 4 cif
(7) GDPR a “controller” means the natural or legal person, public authority, agency or other
body which, alone or jointly with others, determines the purposes and means of the
processing of personal data; where the purposes and means of such processing are
determined by Union or Member State law, the controller or the specific criteria for its
nomination may be provided for by Union or Member State law. Within the lifecycle of a face
recognition system a typical controller would be the developer with regard to the data
(images) used to train the models. Afterwards, the system may be used by an organisation,
who may be considered the controller concerning the data used in the productive stage.
Hence, these controllers need to fulfil their obligations towards their respective data subjects.

Art 5 GDPR established the key principles relating to processing of personal data. According
to the article, personal data shall be “processed lawfully, fairly and in a transparent manner
in relation to the data subject (‘lawfulness, fairness and transparency’)”.16 Art 5 par 2 GDPR
highlights that it is not only the obligation of a controller to ensure compliance with the
transparency obligation, but also to be able to demonstrate compliance.

Modalities of transparency

Section 1 of Chapter III of the GDPR specifically deals with transparency and modalities.
Article 12 is titled “transparent information, communication and modalities for the exercise of
the rights of the data subject.” The actual information that must be provided to data subjects
is enlisted in Art 13 & 14 GDPR. According to paragraph 1 of Art 12 GDPR, this information
must be provided “in a concise, transparent, intelligible and easily accessible form,
using clear and plain language, in particular for any information addressed specifically to a
child.”

The Art 29 Working Party states that “intelligible” means that an average member of the
intended audience should be able to understand the information.17 If there is uncertainty of
the intelligibility, it should be tested (p.ex.: readability testing). The standard applied to

17 Art 29 Working Party, Guidelines on transparency under Regulation 2016/679 – WP 260 rev.01
(2018) 7.

16 Art 5 par 1 lit a GDPR.
15 Art 2 par 2 lit d, par 3 GDPR.
14 Art 2 GDPR.

13 Art 29 Working Party, Guidelines on transparency under Regulation 2016/679 – WP 260 rev.01
(2018) 5.
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controllers in relation to linguistic presentation is high.18 “Easily accessible” means that it
should be obvious where the information is provided. It should not be the task of the data
subject to seek out the relevant information.19 Common examples would be pop-ups and
prominently displayed privacy notices.

Furthermore, the information must (generally) be either provided in writing or other
(electronic) means. The complete information should be provided within one document.
However, a layered approach is recommended.20 Even though the obligations may result in
some workload for the controller, the information must always be provided free of charge.
The data subject must be informed at the time, when the data is obtained.21

Visualisation

The information may also be provided in combination with so-called standardised icons.
The goal would be to aid visibility, legibility and to provide a meaningful overview over the
processing. Such icons must be machine-readable, if they are presented electronically.22

According to the Art 29 Working Party, a variety of visualisation tools may be used: icons,
certification mechanisms, data protection seals and marks.23 However, visualisation tools
may only be used in combination with and not as total replacement for language.24 The
GDPR requires the controller to make use of standardised icons to increase the utility. Since
no decision could be reached on the matter, no annex with standardised icons was delivered
with the GDPR. Rather, it is now the task of the European Data Protection Board and the
European Commission to create a draft.25 Recital 58 of the GDPR highlights that
visualisation may be used in addition to language. However, for the specific information
according to Art 13 & 14 GDPR only standardised icons may be used.26

Information

Art 13 & 14 GDPR specify the information that must be provided to the data subjects. Both
articles contain similar lists but differ in the scope. Art 13 GDPR is applicable if the data were
obtained directly from the data subject. Otherwise, Art 14 GDPR applies. A typical scenario
where Art 14 GDPR applies instead of Art 13 GDPR, would be the training of models with
data from an available online database.

26 Veil in Gierschmann/Schlender/Stentzel/Veil (Eds.), Datenschutzgrundverordnung (2018) Art 12 cif
28.

25 Franck in Gola, DS-GVO2 (2018) Art 12 cif 49.
24 Franck in Gola, DS-GVO2 (2018) Art 12 cif 47.

23 Art 29 Working Party, Guidelines on transparency under Regulation 2016/679 – WP 260 rev.01
(2018) 25.

22 Art 12 par 7 GDPR.
21 Arg.: Art 13 par 1 GDPR.

20 For more information: Art 29 Working Party, Guidelines on transparency under Regulation 2016/679
– WP 260 rev.01 (2018) 11.

19 Art 29 Working Party, Guidelines on transparency under Regulation 2016/679 – WP 260 rev.01
(2018) 7.

18 Schrey in Rücker/Kugler, New European General Data Protection Regulation (2018) 128.
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The list of information is extensive, so only a portion of particularly relevant information will
be listed below. For a practical overview in table form the authors refer to the annex of the
Guidelines on transparency under Regulation 2016/679 of the Article 29 Working party.

The controller must provide information about themselves and potentially their representative
and data protection officer.27 The data subject must be informed about the purposes of and
legal basis for processing28, storage time29 and the individual rights of the data subject.30

Furthermore, the controller must inform about the existence of automated decision-making,
including modalities.31 Due to the importance of this specific topic and its inextricable link to
explainability, it will be discussed in a separate paragraph below. Art 14 GDPR contains a
slightly more extensive list. A controller must inform about the categories of personal data
involved.32 Additionally, the source of the data must be revealed.33

In addition to these obligations, required information may also include inter party
communication on the exercise of the subjects’ rights (Articles 15-22 GDPR) and
communications in relation to data breaches (Article 34 GDPR).

Right to access and specific provisions on automated decision-making

As a counterpart to the obligation of the controller, a data subject has the right to obtain
information about the processing activities. Such information includes, for example, the
purposes of the processing34 and the categories of personal data concerned.35 Art 15 par 1 lit
h also grants the right to data subject to be informed about the existence of automated
decision-making, including profiling. The specific provisions on automated individual
decision-making in the GDPR can be seen as the connecting piece between transparency,
explainability. Art 22 GDPR primarily contains the right of any data subject to not be subject
to a decision solely based on automated processing, including profiling. The data subject
does not need to actively invoke the right for it to apply.36 The right is restricted to cases,
where the automated processing produces legal or similar effects for the data subject. The
right does not apply if explicit consent is provided[38], the decision is necessary for a
contract37 or the decision is authorised by the law of the controller and suitable safeguards
for the data subject are provided.38 In case one of the exceptions applies, the controller must
inform the data subject about: “[…] the existence of automated decision-making, including
profiling, referred to in Article 22(1) and (4) and, at least in those cases, meaningful
information about the logic involved, as well as the significance and the envisaged

38 Art 22 par 2 lit b GDPR.
37 Art 22 par 2 lit c GDPR.

36 Art 29 Working Group, Guidelines on Automated individual decision-making and Profiling for the
purposes of Regulation 2016/679 – WP 251 rev.01 (2018) 19

35 Art 15 par 1 lit b GDPR.
34 Art 15 par 1 lit a GDPR.
33 Art 14 par 2 lit f GDPR.
32 Art 14 par 1 lit d GDPR.
31 Art 13 par 2 lit f GDPR.
30 Art 13 par 2 lit b, c, d GDPR.
29 Art 13 par 2 lit a GDPR.
28 Art 13 par 1 lit c GDPR.
27 Art 13 par 1 lit a, b GDPR.
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consequences of such processing for the data subject.”39 Hence, the question arises, what
the exact telos of the norm is.

Scope

The scope of the provision is limited to specific scenarios. Despite the fact that profiling is
mentioned in the title of Art 22 GDPR, it is not a necessary element for the application. The
concept of profiling can be neglected for the purposes of this document, since facial
recognition systems will rarely fall under the definition due to the lack of evaluation of
personal aspects of the data subject.40 The concept of “automated decision-making”,
however, cannot be dismissed as quickly. Nevertheless, both concepts have a significant
overlap.41 Art 22 GDPR only applies in cases of solely automated decision-making, which
“[…] is the ability to make decisions by technological means without human involvement”.42 If
a human is involved in the decision-making process, Art 22 GDPR usually does not apply,
insofar as the contribution to the decision by the human is significant enough and not just
formal.43 Additionally the automated decision-making must have legal or similar effects for
the data subject. Examples of legal effects mentioned by the Art 29 Working Group include
refused admission to a country or denial of a particular social benefit granted by law. Also a
person may be similarly affected if the decision leads to exclusion or discrimination.

In the case of a facial recognition system, the application of Art 22 GDPR depends on the
context it is used in/for. The argument could be made that at least in case of a classification
system as referred to in in-depth analysis of the European Parliamentary Research
Service44, a decision with potential legal or similar effects for the person is reached fully
automatically. Other examples found in the study would be the use for crime prevention at
train stations or crime investigations at the 2017 G 20 summit in Germany45. Even though it
is questionable, if one would have to include potential false positives, such as wrongfully
being identified as a suspect, the authors would argue for such an interpretation. After all,
the objective of the provision is to address the risk of automated processing. Even if the
processing does not strictly fall within the scope of Art 22 GDPR, the Art 29 Working Group
recommends fulfilling the additional transparency obligations.46

Right to Explanation

As mentioned above, a controller employing automated decision-making must provide
additional information to their data subjects:

a) The fact that the controller is employing the technology

46 Art 29 Working Group, Guidelines on Automated individual decision-making and Profiling for the
purposes of Regulation 2016/679 – WP 251 rev.01 (2018) 25.

45 Madiega/Mildebrath, Regulation facial recognition in the EU (2021) 37.
44 Madiega/Mildebrath, Regulation facial recognition in the EU (2021) 2.

43 Art 29 Working Group, Guidelines on Automated individual decision-making and Profiling for the
purposes of Regulation 2016/679 – WP 251 rev.01 (2018) 21.

42 Ibid.

41 Art 29 Working Group, Guidelines on Automated individual decision-making and Profiling for the
purposes of Regulation 2016/679 – WP 251 rev.01 (2018) 8.

40 Compare to Art 4 cif 4 GDPR.
39 Art 13 par 2 lit f, Art 14 par 2 lit g GDPR.
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b) Meaningful information about the logic involved
c) Explanation of the significance and envisages consequences of the processing.

According to the guidelines on automated individual decision-making, it is the obligation of
the controller to find simple ways to explain the “rationale behind, or the criteria relied on in
reaching the decision”47. Understanding the process can be particularly difficult if
machine-learning is involved.47

The language of Art 22 GDPR and Art 13 & 14 GDPR appears somewhat ambiguous even
after the clarification of the Art 29 Working Group. This fact was noticed even before the
GDPR came into force by various authors, who published essays questioning the right under
the lens of a “right to explanation”.48 It is not unreasonable to prima facie detect a right to
explanation in those articles, especially if one considers the respective Recital 71: “In any
case, such processing should be subject to suitable safeguards, which should include
specific information to the data subject and the right to obtain human intervention, to express
his or her point of view, to obtain an explanation of the decision reached after such
assessment and to challenge the decision.” However, Recital 71 is not legally binding and
the right to explanation is not explicitly mentioned in the safeguards of Art 22 par 3 GDPR.49

According to the elaborations ofWachter, Mittelstadt and Floridi, a right to explanation would
have to include not only information on system functionality such as the logic, significance
(ex-ante) and consequences, but also information on the specific decision (ex-post) such as
the reasons, weighting of features and individual circumstances.50 Within their paper, the trio
comes to the conclusion that, since no ex-post explanation of the specific decision must be
provided, no complete right to explanation exists.51

For the purposes of this analysis, it must therefore be concluded that no right to
explanation currently exists. However, controllers have certain obligations to be
transparent about automated decision-making towards their data subjects.

Exceptions and opening clauses

Art 11 GDPR

51 Wachter/Mittelstadt/Floridi, Why a Right to Explanation of Automated Decision-Making Does Not
Exist in the General Data Protection Regulation, International Data Privacy Law (2017) Vol. 7/2, 76
(82).

50 Wachter/Mittelstadt/Floridi, Why a Right to Explanation of Automated Decision-Making Does Not
Exist in the General Data Protection Regulation, International Data Privacy Law (2017) Vol. 7/2, 76
(78).

49 See also Wachter/Mittelstadt/Floridi, Why a Right to Explanation of Automated Decision-Making
Does Not Exist in the General Data Protection Regulation, International Data Privacy Law (2017) Vol.
7/2, 76 (80).

48 Wachter/Mittelstadt/Floridi, Why a Right to Explanation of Automated Decision-Making Does Not
Exist in the General Data Protection Regulation, International Data Privacy Law (2017) Vol. 7/2, 76;
Mendoza/Bygrave, The Right not to be Subject to Automated Decisions based on Profiling, University
of Oslo faculty of Law Legal Studies Research Paper Series No. 2017-20.

47 Ibid.
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Art 11 par 1 GDPR states: “If the purposes for which a controller processes personal data do
not or do no longer require the identification of a data subject by the controller, the controller
shall not be obliged to maintain, acquire or process additional information in order to identify
the data subject for the sole purpose of complying with this Regulation.” This exemption may
apply, for example, if a developer uses a database for the creation of data derived from
images without knowledge of and interest in the identity of the data subjects. In such a case,
no further data must be collected to identify the data subjects and to fulfil the obligations to
transparency. However, if a data subject provides additional information about their identity
in accordance with Art 11 par 2 GDPR, a controller must still comply with the relevant
provisions. It should be noted that Art 11 GDPR does not apply if national law applies due to
the use of an opening clause.52

Art 89 GDPR
GDPR was the full harmonisation of data protection law, national legislators retained the
right to regulate specific areas of data protection law. Art 89 GDPR contains an opening
clause for research purposes and is therefore of particular interest. National legislation may
contain specific provisions on transparency.53

4.3.3. Future obligations according to the AI-Act

General Remarks

In 2021 the European Commission proposed the Artificial Intelligence Act (AI-Act)54 in an
effort to introduce harmonised rules on artificial intelligence systems. The act marks a
significant new milestone in the process of regulation of new technologies. The main
objective is to ensure that AI systems placed on the EU-market are safe and that
fundamental rights and EU-values are respected. The legal certainty provided by the act is
supposed to foster innovation and investment. AI made in Europe shall be safe, lawful and
trustworthy. In essence, the proposal is a product regulation. It includes design requirements
for AI systems as well as obligations for import and usage of such systems. Specifically, Art
13 & 14 AI-Act contain provisions on transparency and human oversight, which may
increase the required level of interpretability of AI-systems. Interpretability, as mentioned
above, can be seen as one aspect of explainability.55 However, these provisions only apply
to so-called “high risk systems”. It should be noted that the legislative process is extensive
and changes to the text of the regulation are expected. In the current version56, facial
recognition systems, as systems that would potentially use biometric data57, even occupy a

57 Art 3 cif 33.
56 Status: 21/04/2021.

55 Waltl/Vogl, Explainable artificial intelligence – the new frontier in legal informatics, in
Schweighofer/Kummer/Saarenpää/Schafer (Eds.) Data Protection/Legal Tech – Proceedings of the
21st International Legal Informatics Symposium IRIS 2018 (2018) 118.

54 Proposal for a Regulation of the European Parliament and of the Council laying down harmonised
rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain union legislative acts
(referred to as AI-Act).

53 Details are provided in Deliverable 3.1.
52 Kampert in Sydow, Europäische Datenschutzgrundverordnung 2 (2018) Art 11 cif 13.
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special position within the text. Naturally, the application of the specific provisions is
dependent on factors such as intent and data used and cannot be decided categorically.

High-Risk Systems

The classification rules for high-risk AI systems are laid out in Art 6 of the proposed AI-Act.
In essence, an AI system must be regarded as “high-risk” if it is either a safety component or
a product which is covered by Union harmonisation legislation or is required to undergo a
third-party conformity assessment. This, for example, includes sector specific regulation on
machinery or medical devices.58 Additionally, every system that is referred to in Annex III is
a high-risk system. Annex III enlists specific areas, which would be deemed “high-risk” per
se. The first area is of particular relevance for the project XAIface: “(a) AI systems intended
to be used for the ‘real-time’ and ‘post’ remote biometric identification of natural persons;”59

Nevertheless, not all facial recognition systems may fall within the provision. If they are used
for other purposes than identification and Art 6 par 1 does not apply, the system may still be
considered high-risk if it is used for specific intents in areas such as:

● Management and operation of critical infrastructure
● Education and vocational training
● Employment, workers management and access to self-employment
● Access to and enjoyment of essential private services and public services and

benefits
● Law enforcement
● Migration, asylum and border control management
● Administration of justice and democratic processes;60

These categories can be amended by the European Commission even after the regulation is
in force.61 For the current version of the proposal including the annex, it can be assumed that
a significant portion of facial recognition systems would be classified as “high-risk” and would
therefore have to comply with the obligations set out in Chapter 2.

Requirements according to Chapter 2

Art 13 AI-Act establishes new requirements for transparency and provision of information to
users. Users as referred to in this article are not necessarily the data subjects or end users,
but rather professional users of an AI-system.62 Art 13 par 1 AI-Act requires high-risk AI
systems to “[…] be designed and developed in such a way to ensure that their
operation is sufficiently transparent to enable users to interpret the system’s output
and use it appropriately”63 Therefore, transparency and interpretability must be “by design”
rather than being established post-hoc.

63 Art 13 par 1 AI-Act.
62 Art 3 cif 4 AI-Act.
61 Art 7 AI-Act.
60 § 2 – 8 Annex III AI-Act.
59 § 1 lit a Annex III AI-Act.
58 See Annex II to AI-Act.
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Instructions

Additionally, a document with instructions must be provided to the users of the system.64 As
modalities Art 13 par 2 AI-Act requires that the information provided be in a digital or other
format, concise, complete, correct, clear, relevant, accessible, and comprehensible to users.
Similar to the respective provisions on transparency in the GDPR, it can be expected that
the demanded standard for readability will be high.

The instructions mainly include information about the provider65 and the system. The
provider must list the characteristics, capabilities and limitations of performances of the
system.66 The system information includes its intended purpose, accuracy levels,
robustness, cybersecurity, foreseeable misuse and risks, performance as regards the
persons on which the system will be used and specifications for input data as well as
relevant information on training, validation and testing. Importantly, the instructions must
include so-called “human oversight measures” as referred to in Art 14 AI-Act. These
measures include “[…] technical measures put in place to facilitate the interpretation of
the outputs of AI systems by the users”.67

Human Oversight

Art 14 par 1 of the AI-Act requires high-risk AI-systems to “[…] be designed and developed
in such a way, including with appropriate human-machine interface tools, that they can be
effectively overseen by natural persons during the period in which the AI system is in use.”
The aim of the measures is to minimise risks and foreseeable misuse.68

Whenever feasible, the measures shall be already built into the system by the provider
before the product is placed on the market or put into service.69 Otherwise the provider must
identify the measures while they will be implemented by the user.

Art 14 par 4 then sets out the specific objectives such measures must enable a human
overseer to achieve:

“(a) fully understand the capacities and limitations of the high-risk AI system and be able to
duly monitor its operation, so that signs of anomalies, dysfunctions and unexpected
performance can be detected and addressed as soon as possible;

(b) remain aware of the possible tendency of automatically relying or over-relying on the
output produced by a high-risk AI system (‘automation bias’), in particular for high-risk AI
systems used to provide information or recommendations for decisions to be taken by
natural persons; (c) be able to correctly interpret the high-risk AI system’s output, taking
into account in particular the characteristics of the system and the interpretation tools and
methods available;

69 Art 14 par 3 lit a AI-Act.
68 Art 14 par 2 AI-Act.
67 Art 13 par 3 lit d AI-Act.
66 Art 13 par 3 lit b AI-Act.
65 Art 13 par 3 lit a AI-Act.
64 Art 13 par 2 AI-Act.
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(d) be able to decide, in any particular situation, not to use the high-risk AI system or
otherwise disregard, override or reverse the output of the high-risk AI system;

(e) be able to intervene in the operation of the high-risk AI system or interrupt the system
through a “stop” button or a similar procedure.”

Specifically for AI systems intended to be used for remote biometric identification of natural
persons, the measures must ensure that no action or decision is taken as a result of the
systems identification without verification and confirmation by at least two natural
persons.70

For the purposes of this analysis, it must therefore be concluded that the new
proposal of the AI-Act will significantly increase the requirements of interpretability
and transparency of high-risk AI-systems by introducing new design and human
oversight obligations. These obligations will require providers to technically enable
the correct interpretation of outputs of AI systems. Such measures must include
human-machine interfaces that will allow for better interpretability.

4.4. Compliance Efforts
UNIVIE has elaborated in great detail on the legal interpretation of the AI Act as well as the
GDPR within the present, but also other deliverables. Great detail, however, also bears the
problem of high information density. In this chapter, all basic requirements by the current
draft of the AI Act as well as the GDPR will be reiterated, including the exact wording of the
draft and the regulation, so it may be cross-referenced to specific solutions or proposed
answers by D4.1.

4.4.1. AI-ACT71

Aid professional users (Art
13)

High-risk AI systems shall be designed and developed in
such a way to ensure that their operation is sufficiently
transparent to enable users to interpret the system’s output
and use it appropriately. An appropriate type and degree of
transparency shall be ensured, with a view to achieving
compliance with the relevant obligations of the user and of
the provider set out in Chapter 3 of this Title.

A-13-1

Aid professional users:

"Interpretability"

"human-machine-interface"
(Art 15)

High-risk AI systems shall be designed and developed in
such a way, including with appropriate human-machine
interface tools, that they can be effectively overseen by
natural persons during the period in which the AI system is in
use.

A-15-1

71 As per EC draft COM(2021) 206 final, 2021/0106(COD), see
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206&from=EN; for the
wordings in the statement of the Council please refer to
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=consil%3AST_15698_2022_INIT.

70 Art 14 par 5 AI-Act.
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Information to be made
transparent according to Art
13 (3) “transparency”:

- Intended purpose;
- Accuracy, robustness and cybersecurity level;
- Reasonably foreseeable misuse causing risks to

health, safety and fundamental rights;
- Performance “as regards the persons or groups of

persons on which the system is intended to be
used";

- Information about training, validation, testing data
sets and input data;

- Human oversight measures.

A-13-2

Aid professional users (Art
14)

[Users should be able to] fully understand the capacities and
limitations of the high-risk AI system and be able to duly
monitor its operation, so that signs of anomalies, dysfunctions
and unexpected performance can be detected and addressed
as soon as possible.

A-14-1

Aid professional users (Art
14)

[Users should] remain aware of the possible tendency of
automatically relying or over-relying on the output produced
by a high-risk AI system (‘automation bias’), in particular for
high-risk AI systems used to provide information or
recommendations for decisions to be taken by natural
persons.

A-14-2

Interpretability (Art 14) [Users should] be able to correctly interpret the high-risk AI
system’s output, taking into account, in particular, the
characteristics of the system and the interpretation tools and
methods available;

A-14-3

Aid professional users (Art
14)

[Users should] be able to decide, in any particular situation,
not to use the high-risk AI system or otherwise disregard,
override or reverse the output of the high-risk AI system;

A-14-4

Aid professional users (Art
14)

[Users should] be able to intervene in the operation of the
high-risk AI system or interrupt the system through a “stop”
button or a similar procedure.

A-14-5

Accuracy/Robustness (Art
15)

The levels of accuracy and the relevant accuracy metrics of
high-risk AI systems shall be declared in the accompanying
instructions of use.

A-15-2

Accuracy/Robustness (Art
15)

High-risk AI systems that continue to learn after being placed
on the market or put into service shall be developed in such a
way to ensure that possibly biased outputs due to outputs
used as an input for future operations (‘feedback loops’) are
duly addressed with appropriate mitigation measures.

A-15-3

4.4.2. GDPR72

72 Art 22 as well as the rest of the official consolidated text of the GDPR can be accessed under
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679#d1e2838-1-1.
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Transparency (Art 15) [The controller shall provide] meaningful information about the
logic involved, as well as the significance and the envisaged
consequences of such processing for the data subject.

G-15-1

Right to access (Art
15)

The controller shall provide a copy of the personal data undergoing
processing.

G-15-2

Right to access (Art
15)

The right to obtain a copy referred to in paragraph 3 [Art 15] shall
not adversely affect the rights and freedoms of others.

G-15-3

Transparency (Art 14) [The controller shall provide meaningful information about] the
existence of automated decision-making, including profiling, as
well as the

G-14-1

Transparency (Art 14) [The controller shall provide] meaningful information about the
logic involved.

G-14-2

Transparency (Art 14) [The controller shall provide meaningful information about the]
significance and the envisaged consequences of such processing
for the data subject.

G-14-3

Intervention of
automated
decision-making (Art
22)

The data subject shall have the right not to be subject to a decision
based solely on automated processing, including profiling, which
produces legal effects concerning him or her or similarly
significantly affects him or her. [This shall not apply where it] is (a)
necessary for entering into, or performance of, a contract between
the data subject and a data controller; (b) is authorised by Union or
Member State law to which the controller is subject and which also
lays down suitable measures to safeguard the data subject's rights
and freedoms and legitimate interests; or (c) is based on the data
subject's explicit consent.

G-22-1

Differentiation
between “normal” and
special categories of
personal data (Art 22)

Decisions referred to in paragraph 2 shall not be based on special
categories of personal data referred to in Article 9(1), unless point
(a) or (g) of Article 9(2) applies and suitable measures to
safeguard the data subject's rights and freedoms and legitimate
interests are in place.

G-22-2

Deliverable D4.1 69



Measuring and Improving Explainability for AI-based Face Recognition

4.5. Ethical Requirements
4.5.1. HLEG-guidelines

The Ethics Guidelines for Trustworthy AI73 are a central reference document for issues on AI.
They promote trustworthy AI, which must be lawful, ethical, and robust.74 The document,
however, by its own definition does not provide guidance on lawful AI. Hence, these
requirements were established in the chapter on legal requirements. The following section
analyses the key requirements on transparency and explainability of the guidelines.

Transparency & Explainability

According to the guidelines, transparency of AI can be structured into three components:
traceability, explainability and communication.75 “Traceability” dictates that data sets and
processes that yield a decision must be documented to increase transparency. Likewise,
decisions of the AI systems should be traced to identify errors. “Explainability” is the ability to
not only explain the technical process, but also the related human decisions. A human must
be able to understand and trace the decisions. The guidelines assert that the person or
persons concerned should have a right to explanation, whenever the AI system has a
significant impact on their lives.73 The explanation should be provided in a timely manner and
suitable for the receiver. Furthermore, the guidelines demand transparency of the influences
of AI-systems on organisation decision-making processes. “Communication” means that AI
systems must not represent themselves as humans, but be transparent of their identity.
Capabilities and limitations should be communicated appropriately to the parties involved.

The guidelines go into more detail on explanation methods in the section on technical
methods. To be considered trustworthy, it must be understandable why a system behaved in
a given manner or why it gave a certain interpretation.76 The document states that “[…] to
address this issue to better understand the system’s underlying mechanisms and find
solutions” is still an open challenge for some AI systems and that XAI research is vital.77 For
the concrete assessment of explainability, the authors refer to the relevant section in the
assessment list in the guidelines.78

For the purposes of this analysis, it must therefore be concluded that a right to
explanation is ethically required, whenever an AI system has a significant impact on a
person or group of persons.

78 High-Level Expert Group on AI, Ethics Guidelines for Trustworthy AI (2019) 29.
77 High-Level Expert Group on AI, Ethics Guidelines for Trustworthy AI (2019) 21, 22.
76 High-Level Expert Group on AI, Ethics Guidelines for Trustworthy AI (2019) 21.
75 High-Level Expert Group on AI, Ethics Guidelines for Trustworthy AI (2019) 18.
74 High-Level Expert Group on AI, Ethics Guidelines for Trustworthy AI (2019) 2.
73 High-Level Expert Group on AI, Ethics Guidelines for Trustworthy AI (2019).
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4.6. Preliminary Conclusion

The aim of this Section is to determine whether obligations to be transparent and to provide
explanations for decisions of facial recognition systems exist. In turn, it was questioned
whether there is a legal right to obtain explanations of facial recognition systems.

Having analysed the current state of EU-legislation, the authors reached the following
conclusion:

● The GDPR contains specific provisions that oblige data controllers to be transparent
about the data processing towards data subjects.

● Art 22 GDPR in conjunction with Art 13-15 GDPR only requires the controller to
inform about the existence of automated decision-making, including profiling, and
meaningful information about the logic involved, the significance and the envisaged
consequences of the processing. Exceptions may apply.

● The articles do not provide for an obligation to ex-post explain specific decisions and
therefore also do not contain a right to explanation in line with the current legal
definition of such a right.

With regard to future EU-legislation, the authors reached the following conclusion:

● The proposal for the AI-Act in its current form will increase the level of transparency
of high-risk AI systems, which will include a significant portion of facial recognition
systems.

● The proposal for the AI-Act requires high-risk AI-systems to be designed in such a
way, that their outputs are interpretable.

● Various technical tools for interpretability and human-machine interfaces will have to
be provided.

● The document is still subject to change and results of the analysis are therefore only
preliminary.

With regard to the Ethics Guidelines on AI, the authors reached the following conclusion:

● A right to explanation is ethically required, whenever an AI system has a significant
impact on a person or group of persons.

● Providing solutions to make certain AI systems explainable is still an open challenge.

So, as a final remark, concerning the project XAIface, it must therefore be concluded that the
efforts fall in line with the direction of future legislative projects. Even though not all methods
may currently be legally required, there is an ethical obligation to ensure explainability. The
concrete methods to allow for interpretability are not specified in the proposal of the AI-Act.
Rather, they must be implemented or at least provided for by the provider of an AI system.
The researched methods may be used to achieve compliance with future legislation. As
insinuated in Art 13 and 14 of the proposal of the AI-Act, however, the choice of methods
and interpretation tools will depend on the use case.
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5. Summary
In this deliverable, the overview of the state of the art on AI explainability methods, focused
on potential application for face recognition, is provided. This overview serves to give a
necessary background for the development of new face explainability methods in the frame
of the project.

In the overview (see Section 2), different categories of AI-explainability methods have been
identified, including local and global methods, model specific and agnostic methods,
white-box and black-box approaches, and gradient-based backpropagation as well as
perturbation-based forward propagation algorithms. For each method, along with a brief
description, we report which category it belongs to and what its possible use in XAIface
might be. In addition, where possible, links to the implementation of the method are given.
Many of the AI explainability methods in Section 2 are model-agnostic and applicable to
black-box models. This allows a lot of flexibility in choosing the architecture of the face
recognition model. However, a drawback of these methods is that their output can be very
generic. Thus, one of the objectives of XAIface is to map novel, human understandable and
reasonable (local) features.

Section 3 describes the methods developed in detail and reports basic performance
evaluations of the new methods and modules for AI face explainability in XAIface.
Furthermore, for each method there is a short paragraph describing the link to the
preliminary assessment of potential legal and ethical issues described in more detail in
Section 4.

Finally we want to mention again, that the main goals for the methods to be developed in the
project are to: (i) develop AI explainability methods specific for face recognition; (ii) to
provide meaningful and reasonable feedback for the end-users, (iii) to disentangle
demographic information from identity to protect people's privacy; (iv) to understand what
other information can be extracted from the face (soft biometrics) apart from identity.

As a conclusion of the legal and ethical requirements it turned out, that while there is an
ethical requirement to make AI systems explainable, the current EU-legislation does not
provide for a general right to explanation of or an obligation to explain decisions of facial
recognition systems ex post. Depending on the context, data subjects may have a right to
obtain ex-ante information such as the logic involved. Future legislation may change the
status quo insofar as outputs of high-risk AI-systems must be interpretable.
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